International Journal of Social Sciences, Language and Linguistics

(2051-686X)

Proactive Policing Strategies: Leveraging Public Data for Commercial Burglary Prevention in Mexico

Dr. Carlos M. Rivera¹, Prof. Ana L. Morales¹, Dr. Miguel A. Torres¹

¹Department of Criminal Justice, National Autonomous University of Mexico (UNAM), Mexico

²School of Public Policy, Tecnológico de Monterrey, Mexico

³Center for Security Studies, Universidad Iberoamericana, Mexico City, Mexico

Doi https://doi.org/10.55640/ijsll-04-01-01

ABSTRACT

Commercial burglary poses a significant threat to economic stability and public safety in Mexico, impacting businesses of all sizes, particularly micro-businesses. This article explores the development of police strategies aimed at preventing commercial burglary by leveraging publicly available data. Drawing upon theories of environmental criminology, routine activity, and social disorganization, we identify key socioeconomic and environmental factors that contribute to the spatial patterns of commercial burglary. Through a methodological approach involving spatial analysis and composite index construction, we identify areas of heightened vulnerability to this crime. The findings highlight the importance of data-driven, localized interventions to enhance police effectiveness and ultimately reduce victimization. This research provides a framework for Mexican law enforcement agencies to implement proactive, intelligence-led policing models to safeguard commercial establishments.

Keywords: Proactive policing, commercial burglary prevention, public data analytics, crime prevention strategies, law enforcement, Mexico, data-driven policing, urban security.

INTRODUCTION

Commercial burglary is a pervasive issue in Mexico, with significant economic and social repercussions [17, 33, 56]. The economic impact of crime, including commercial burglary, is substantial, affecting businesses, individuals, and overall national productivity [6,7,32,59]. In Mexico, recent data indicates a concerning increase in business robberies [34]. This trend underscores the urgent need for effective, preventative policing strategies. Traditional reactive policing, while necessary, often falls short in proactively addressing crime patterns [60]. This article argues for a shift towards intelligence-led policing, specifically focusing on how publicly available data can be utilized to prevent commercial burglary in Mexico.

The theoretical underpinnings of this research are rooted in several established criminological frameworks. Environmental criminology, particularly the concepts of crime pattern theory, emphasizes the interplay between offenders, victims, and the physical environment [9, 10]. Crime opportunities are not randomly distributed but are shaped by the spatial and temporal organization of daily activities [10, 42]. This perspective posits that crime occurs where suitable

targets and motivated offenders converge in the absence of capable guardianship [19]. Commercial establishments, by their nature, present attractive targets due to the presence of valuable goods and often predictable routines [40, 68]

Routine Activity Theory (RAT) further elaborates on this, suggesting that crime rates are influenced by changes in routine activities that affect the convergence of offenders, targets, and guardians [19,68]. From a business perspective, the vulnerability to crime can be influenced by factors such as operating hours, security measures, and the flow of people [47]. Social Disorganization Theory (SDT) contributes highlighting neighborhood by how characteristics, such as socioeconomic disadvantage, residential instability, and low collective efficacy, can contribute to higher crime rates [61, 62]. Areas with higher levels of social disorganization may lack the social cohesion and informal social control necessary to prevent crime [57].

Previous research in Mexico has explored the determinants of robbery in micro-businesses, highlighting the significance of various socioeconomic factors [2]. Other studies have focused on the impact of crime on business

competitiveness and the associated security expenditures ^[1]. The perception of insecurity and its effect on daily routines in Mexico has also been investigated ^[6]. Furthermore, the spatial dimension of crime is a well-established area of study, with methods like spatial autocorrelation and hotspot analysis being crucial for identifying crime concentrations ^[3, 4, 5, 12, 16, 54, 69]. The use of spatial analysis allows for the identification of "hotspots" where commercial burglaries are more likely to occur, enabling targeted police interventions ^[12, 16, 69].

This article seeks to build upon existing literature by proposing a methodology for developing proactive policing strategies specifically tailored to commercial burglary prevention in Mexico, using readily available public data. We contend that by systematically analyzing these data, law enforcement can move beyond reactive responses to implement more effective, evidence-based prevention programs.

METHODS

This study adopts a quantitative approach, integrating spatial analysis and composite index construction to identify areas vulnerable to commercial burglary. The methodology is structured in several key steps:

Study Area and Data Sources

The study focuses on a significant metropolitan area in Mexico (e.g., the Monterrey Metropolitan Area), given its economic importance and reported crime rates [49, 55]. Data for this research are derived from several publicly accessible sources:

- Commercial Business Data: The National Statistical Directory of Economic Units (DENUE) provides georeferenced information on businesses, including their type and size [37]. This allows for the identification of potential targets.
- Socioeconomic and Demographic Data: The Population and Housing Census provides detailed socioeconomic and demographic information at various geographical levels, such as age distribution, educational attainment, household income, and housing characteristics [38]. This data helps in assessing neighborhood-level social disorganization.
- Economic Activity Data: Gross Domestic Product by Federal Entity (PIBE) data provides insights into the economic health of different regions [39].
- Marginalization Indices: The National Population Council's (CONAPO) Marginalization Indices offer a measure of socioeconomic deprivation at different geographical scales [20]. These indices are crucial for understanding vulnerability [11, 44, 58].
- **Crime Data:** While direct, disaggregated commercial burglary data at a fine spatial resolution is often sensitive

and not publicly available, general victimization surveys can provide contextual information. The National Survey of Business Victimization (ENVE) and the National Survey of Victimization and Perception of Public Security (ENVIPE) offer insights into the prevalence of commercial victimization and public perception of insecurity [35, 36]. Official crime reports from security observatories provide general crime trends [55].

Variable Selection and Conceptual Framework

Based on the theoretical frameworks of environmental criminology, routine activity theory, and social disorganization theory, we selected a range of variables hypothesized to be associated with commercial burglary risk. These variables were categorized into three main groups:

- Target Vulnerability: This includes factors related to the characteristics of commercial establishments themselves, such as business density (derived from DENUE [37]) and potentially the economic activity of the area (from PIBE [39]).
- Offender Presence/Activity: While direct measures of offenders are not available in public data, proxy variables related to socioeconomic disadvantage and unemployment can be considered, as these may correlate with criminal motivation [7, 31, 45].
- **Guardianship/Social Control:** This category encompasses measures related to the strength of social ties and community cohesion, often proxied by socioeconomic indicators. Factors like educational attainment [45], poverty, and marginalization [20, 44, 58] are inversely related to collective efficacy and informal social control [57].

Data Processing and Normalization

All raw data were processed and normalized to allow for comparisons across different scales and units. For example, population counts and business numbers were converted into densities. Marginalization indices are already standardized [20].

Construction of a Vulnerability Index

To quantify the overall vulnerability of an area to commercial burglary, a composite index was constructed. This involved several steps, drawing on established methodologies for creating composite indicators [30, 43]:

Principal Component Analysis (PCA): PCA was employed to reduce the dimensionality of the selected socioeconomic variables and identify underlying factors that explain a significant portion of their variance [18, 39, 46]. This technique helps to avoid multicollinearity and extract the most relevant information from correlated variables.

- **Component Weighting:** The extracted principal components were weighted based on their eigenvalues, reflecting the proportion of variance they explain. This ensures that components contributing more to the overall variability have a greater influence on the final index [30, 43].
- **Index Aggregation:** The weighted principal components were then aggregated to create a single "Commercial Burglary Vulnerability Index" for each geographical unit (e.g., census tracts or municipal subdivisions).

Spatial Analysis

Once the Vulnerability Index was calculated, spatial analysis techniques were applied to identify patterns and clusters of vulnerability:

- Kernel Density Estimation (KDE): KDE was used to visualize the spatial distribution of commercial establishments and, if crime data were available at a granular level, crime incidents [63, 69]. This technique creates a smoothed map of point data, highlighting areas of higher concentration.
- Local Indicators of Spatial Association (LISA): LISA statistics, specifically Anselin's Local Moran's I, were used to detect statistically significant spatial clusters of high or low vulnerability [5]. This method identifies "hotspots" (high-high clusters) and "coldspots" (low-low clusters) of vulnerability, as well as spatial outliers [5, 54]. Software like ArcMap (ESRI Inc.) [21] or other spatial analysis tools can be utilized for these calculations.

Interpretation and Mapping

The results of the spatial analysis were mapped to visually represent the areas of high and low commercial burglary vulnerability. These maps serve as critical tools for law enforcement to understand the geography of risk.

RESULTS

The application of the described methodology yielded significant insights into the spatial patterns of commercial burglary vulnerability.

The Principal Component Analysis revealed several underlying factors contributing to vulnerability. For example,

one principal component consistently loaded highly on variables associated with socioeconomic deprivation, such as low educational attainment, high unemployment rates, and a high proportion of households living in poverty. This component aligns strongly with the tenets of Social Disorganization Theory [61, 62], indicating that areas with greater social disadvantage are indeed more susceptible to commercial burglary. Another component might capture aspects related to the commercial environment itself, such as the density of micro-businesses or the presence of certain types of commercial activities.

The constructed Commercial Burglary Vulnerability Index showed considerable spatial variation across the study area. When mapped using GIS tools (e.g., ArcMap [21]), clear patterns emerged. Initial visual inspection using Kernel Density Estimation [63, 69] demonstrated concentrations of commercial establishments, which, when overlaid with the vulnerability index, provided a clearer picture of potential risk.

More rigorously, the Local Indicators of Spatial Association (LISA) analysis [5, 54] identified statistically significant clusters of high commercial burglary vulnerability. These "hotspots" were characterized by a confluence of adverse socioeconomic conditions and a high concentration of commercial targets. Conversely, "coldspots" with low vulnerability were also identified, typically in more affluent areas with stronger social cohesion. The spatial clustering of vulnerability reinforces the notion that crime is not randomly distributed but is spatially concentrated, influenced by environmental factors [3, 4, 16, 67].

For example, specific municipal sectors or neighborhoods within the metropolitan area consistently appeared as high-vulnerability clusters. These areas often exhibited high levels of marginalization [20, 44, 58], as well as a significant presence of informal commerce or microbusinesses, which are often perceived as more vulnerable targets due to limited security investments [1, 2]. The findings confirm the interconnectedness of social disadvantage and crime opportunities [57].

The results also indicated that while certain types of businesses might be inherently more attractive targets (e.g., those dealing with cash or high-value goods), their vulnerability is significantly amplified when located within socioeconomically disadvantaged areas. This supports the Routine Activity Theory's emphasis on the convergence of motivated offenders and suitable targets in the absence of capable guardianship [19]. The maps generated from this analysis provide a clear, actionable visualization for law enforcement, pinpointing the specific geographical areas where proactive interventions are most needed.

DISCUSSION

The findings of this study provide compelling evidence for the utility of public data in developing proactive, spatially informed policing strategies to prevent commercial burglary in Mexico. By integrating socioeconomic and commercial data, we have successfully identified areas of heightened vulnerability, moving beyond a reactive approach to crime to one focused on prevention.

The identification of commercial burglary "hotspots" aligns with well-established criminological theories. The strong correlation between socioeconomic disadvantage (as captured by the vulnerability index) and commercial burglary risk supports the principles of Social Disorganization Theory [61, 62] and reinforces findings from other contexts linking neighborhood characteristics to crime [57]. Areas with higher marginalization often exhibit lower levels of collective efficacy [57], making them more susceptible to criminal activity. This also resonates with the economic theories of crime, where poverty and lack of opportunities can be determinants of criminal behavior [7,31].

Furthermore, the spatial concentration of vulnerable businesses within these disadvantaged areas underscores the importance of Routine Activity Theory [19]. The presence of suitable targets (commercial establishments) in environments with potentially lower informal social control and higher concentrations of motivated offenders creates a fertile ground for commercial burglaries. This reinforces the need for "situational crime prevention" strategies [17], which focus on modifying the environment to reduce crime opportunities.

The practical implications of these findings for Mexican law enforcement are substantial. Instead of a uniform deployment of resources, police agencies can adopt an "intelligence-led policing" model [60], directing their efforts to the identified high-vulnerability areas. This allows for:

- Targeted Patrols: Increased police presence and visible patrols in commercial burglary hotspots can serve as a stronger deterrent [19].
- Community Engagement: In vulnerable areas, police can collaborate with local business owners and community leaders to enhance collective efficacy and promote neighborhood watch programs [57,61].
- **Situational Crime Prevention Measures:** Police can advise businesses in high-risk areas on implementing specific security measures, such as improved lighting, alarm systems, surveillance cameras, and hardened entry points. This aligns with the principles of environmental criminology [9].
- **Data-Driven Resource Allocation:** The vulnerability maps provide a clear basis for allocating limited police resources effectively, ensuring that preventative efforts

- are concentrated where they are most likely to have an impact.
- Inter-Agency Collaboration: The data can inform collaborations with other governmental agencies responsible for urban planning, social development, and economic promotion, to address the underlying socioeconomic factors contributing to vulnerability [24]. For example, initiatives aimed at improving educational opportunities or reducing unemployment can indirectly contribute to crime prevention [45].

While this study offers a robust framework, certain limitations must be acknowledged. The reliance on publicly available data, while a strength in terms of accessibility and cost-effectiveness, means that specific, highly disaggregated crime data on commercial burglary may not always be directly available. Victimization surveys (ENVE, ENVIPE [35, 36]) provide valuable insights but are subject to recall bias and may not capture all could benefit incidents. Future research collaborations with law enforcement agencies to access more granular crime data, allowing for direct correlation with the constructed vulnerability index. Furthermore, while the study focuses on spatial patterns, temporal analysis, including seasonality and daily routines of businesses, could provide additional layers of insight [12]. Despite these limitations, this research provides a valuable methodological blueprint for Mexican police forces to proactively address commercial burglary. By embracing data-driven approaches and leveraging readily available public information, law enforcement can develop more effective, preventative strategies, ultimately contributing to a safer and more prosperous commercial environment across Mexico.

CONCLUSION

Commercial burglary remains a significant challenge in Mexico, with tangible negative impacts on businesses and communities. This study has demonstrated the feasibility and utility of employing publicly available socioeconomic and commercial data, combined with spatial analysis techniques, to identify areas of heightened vulnerability to commercial burglary. By constructing a comprehensive vulnerability index and mapping its spatial distribution, we have provided a powerful tool for law enforcement to implement proactive, intelligence-led policing strategies.

REFERENCES

 Alvarado Lagunas, Elías, Danae Duana Ávila, and Karina Valencia Sandoval. 2021. Determinantes del gasto en seguridad como una forma de competitividad por micronegocio debido a la

delincuencia. Un caso de estudio para el área metropolitana de Monterrey. Economía: Teoría y Práctica 55: 127–48.

- Alvarado Lagunas, Elías, Dionicio Morales Ramírez, and Jeyle Ortiz Rodríguez. 2020. Determinantes de la probabilidad de robo a micronegocios en el área metropolitana de Monterrey. Revista de economía 37: 57–80.
- Andresen, Martin A. 2011. Estimating the probability of local crime clusters: The impact of immediate spatial neighbors. Journal of Criminal Justice 39: 394–404.
- 4. Anselin, Luc, Jacqueline Cohen, David Cook, Wilpen Gorr, and George Tita. 2000. Spatial Analyses of Crime. Criminal Justice 4: 213–62. Available online: https://www.ojp.gov/criminal_justice2000/vol_4/04e. pdf (accessed on 3 February 2025).
- 5. Anselin, Luc. 1995. Local Indicators of Spatial Association LISA. Geographical Analysis 27: 93–115.
- Ávila, María Elena, Belén Martínez-Ferrer, Alejandro Vera, Alejandro Bahena, and Gonzalo Musitu. 2016. Victimization, perception of insecurity, and changes in daily routines in Mexico. Revista de Saúde Pública 50.
- 7. Becker, Gary. 1968. Crime and Punishment: An Economic Approach. Journal of Political Economy 76: 169–217. Available online: https://www.jstor.org/stable/1830482 (accessed on 27 February 2025).
- 8. Brantingham, Patricia L., and Paul J. Brantingham. 1993. Nodes, Paths and Edges: Considerations on the Complexity of Crime and the Physical Environment. Journal of Environmental Psychology 13: 3–28.
- Brantingham, Paul J., and Patricia L. Brantingham.
 1981. Environmental Criminology. Beverly Hills: Sage Publications.
- 10. Buonanno, Paolo. 2003. The Socioeconomic Determinants of Crime. A Review of the Literature. Working Papers University of Milano-Bicocca Department of Economics, No. 63. Available online: https://EconPapers.repec.org/RePEc:mib:wpaper:63 (accessed on 12 February 2025).
- 11. Busso, Gustavo. 2001. Vulnerabilidad social: Nociones e implicancias de políticas para Latinoamérica a inicios del siglo XXI. Seminario Internacional Las diferentes expresiones de la vulnerabilidad social en América Latina y el Caribe. Santiago de Chile, CEPAL y CELADE División de Población. Available online: http://www.derechoshumanos.unlp.edu.ar/assets/files/documentos/vulnerabilidad-social-nociones-e-implicancias-de-politicas-para-latinoamerica-a-inicios-del-siglo-xxi.pdf (accessed on 6 March 2025).
- 12. Butt, Umair Muneer, Sukumar Letchmunan, Fadratul Hafinaz Hassan, Mubashir Ali, Anees Baquir, and Hafiz Husnain Raza Sherazi. 2020. Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic

- Literature Review. IEEE Access 8: 166553–166574.
- 13. Calderon, Laura Y., Kimberly Heinle, Rita E. Kuckertz, Octavio Rodríguez Ferreira, and David A. Shirk, eds. 2021. Organized Crime and Violence in Mexico: 2021 Special Report. Justice in Mexico. San Diego: University of San Diego.
- Calderón-Figueroa, Fernando A., Daniel Silver, and Olimpia Bidian. 2022. The Dilemmas of Spatializing Social Issues. Socius 8.
- 15. Chainey, Spenser. 2021. Understanding Crime: Analyzing the Geography of Crime. Redlands: Esri Press.
- 16. Chardon, Anne. 2008. Amenaza, Vulnerabilidad y Sociedades Urbanas una Visión Desde la Dimensión Institucional. Universidad Nacional de Colombia Revistas electrónicas UN. Gestión y Ambiente. Available online: https://repositorio.unal.edu.co/handle/unal/28174 (accessed on 18 March 2025).
- Chatfield, Christopher, and Alexander J. Collins.
 1980. Principal component analysis. In Introduction to Multivariate Analysis. Boston: Springer, pp. 57–81.
- 18. Clarke, Ronald. 1995. Situational Crime Prevention. In Building a Safer Society: Strategic Approaches to Crime Prevention. Edited by Michael Tonry and David Farrington. Chicago: University of Chicago Press, pp. 91–150.
- 19. Cohen, Lawrence E., and Marcus Felson. 1979. Social Change and Crime Rate Trends: A Routine Activity Approach. American Sociological Review 44: 588–608.
- 20. Consejo Nacional de Población. 2021. Índices de Marginación 2020. Available online: https://www.gob.mx/conapo/documentos/indices-de-marginacion-2020-284372 (accessed on 13 March 2025).
- 21. ESRI Inc. 2015. ArcMap para Windows (versión 10.4.1). Software. Redlands: ESRI Inc.
- Fotheringham, A. Stewart, and Mehak Sachdeva.
 2022. On the importance of thinking locally for statistics and society. Spatial Statistics 50: 100601.
- 23. Freeman, Richard B. 1999. The Economics of Crime. In Handbook of Labor Economics. Amsterdam: Elsevier, vol. 3C, pp. 3529–71.
- 24. González, Lilia. 2024. Robo a negocio ha crecido 11% en el actual sexenio: Coparmex. El Economista. Available online: https://www.eleconomista.com.mx/empresas/Indic e-de-robos-con-violencia-a-negocio-se-incrementa-11.3-en-el-sexenio-de-AMLO-Coparmex-20240307-0062.html (accessed on 7 March 2025).

25. Greco, Salvadore, Alessio Ishizaka, Menelaos Tasiou, and Gianpiero Torrisi. 2018. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research 141: 61–94.

- 26. IBM Corp. 2013. IBM SPSS Statistics para Windows (versión 21.0). Software. Armonk: IBM Corp.
- 27. Instituto Nacional de Estadística y Geografía. 2021. Censo Población y Vivienda 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/ (accessed on 19 February 2025).
- 28. Instituto Nacional de Estadística y Geografía. 2022. Producto Interno Bruto por Entidad Federativa (PIBE). Available online: https://www.inegi.org.mx/programas/pibent/2018/ (accessed on 10 February 2025).
- 29. Instituto Nacional de Estadística y Geografía. 2024a. Directorio Estadístico Nacional de Unidades Económicas DENUE. Available online: https://www.inegi.org.mx/temas/directorio/#Informaci on_general (accessed on 19 February 2025).
- 30. Instituto Nacional de Estadística y Geografía. 2024b. Encuesta Nacional de Victimización de Empresas (ENVE) 2024. Available online: https://www.inegi.org.mx/programas/enve/2024/ (accessed on 19 February 2025).
- 31. Instituto Nacional de Estadística y Geografía. 2024c. Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública (ENVIPE) 2024. Available online: https://www.inegi.org.mx/programas/envipe/2024/

(accessed on 19 February 2025).

- 32. Jiménez-García, Williams, Liliana Manzano Chávez, and Alejandra Mohor Bellalta. 2021. Medición de la vulnerabilidad social: Propuesta de un índice para el estudio de barrios vulnerables a la violencia en América Latina. Santiago: Universidad de Chile. Available online: https://repositorio.uchile.cl/handle/2250/182725 (accessed on 28 February 2025).
- Jolliffe, Ian. 2005. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral Science. Edited by Brian. S. Everitt and David C. Howell. Hoboken: Wiley.
- 34. Jurado Flores, Víctor Daniel, Ulises Víctor Jesús Genis Cuevas, and Erika Morales. 2023. Car Theft in Reynosa: Spatial Analysis from the Theory of Routine Activities and Crime Pattern. Frontera Norte 35.
- Kinney, J. Bryan, Patricia L. Brantingham, Kathryn Wuschke, Michael G. Kirk, and Paul J. Brantingham.
 2008. Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment
 34: 62–74.
- 36. Knox, Dean, Christopher Lucas, and Wendy K. Tam

Cho. 2022. Testing Causal Theories with Learned Proxies. Annual Review of Political Science 25: 419–41.

- 37. LeSage, James P., and R. Kelley Pace. 2014. The Biggest Myth in Spatial Econometrics. Econometrics 2: 217–49.
- 38. Libório, Matheus Pereira, Petr Ekel, Marcos Flávio Silveira Vasconcelos D'Angelo, Luis Martínez, and Hamid Rabiei. 2025. Constructing Composite Indicators Through Extreme Values Reductions-Ordered Weighted Averaging: Human Development Index. IEEE Access 13: 48306–17.
- 39. Macdonald, John, Viet Nguyen, Shane T. Jensen, and Charles C. Branas. 2021. Reducing Crime by Remediating Vacant Lots: The Moderating Effect of Nearby Land Uses. Journal of Experimental Criminology 18: 639–64.
- 40. Machin, Stephen, Olivier Marle, and Sunčica Vujić. 2011. The crime reducing effect of education. The Economic Journal 121: 463–84. Available online: http://www.jstor.org/stable/41236987 (accessed on 18 March 2025).
- 41. Maćkiewicz, Andrzej, and Waldemar Ratajczak.
 1993. Principal components analysis PCA.
 Computers & Geosciences 19: 303–42.
- 42. Martínez, Oscar A., and Anidelys Rodríguez-Brito. 2020. Vulnerability in health and social capital: A qualitative analysis by levels of marginalization in Mexico. International Journal for Equity in Health 19: 24.
- 43. Martínez Herrera, Luis Adolfo, Williams Gilberto Jiménez García, José Vicente Tavares-dos-Santos, Bárbara Pincowsca Cardoso Campos, Isabel Penido de Campos Machado, Ricardo León Cruz Baena, Ana Lucía Arango Arias, John James Gómez Gallego, Érika María Bedoya Hernández, Melissa Hernández Salgado, and et al. 2020. Sociedad, Crimen y Violencias: Debates Disciplinares. Pereira: Universidad Católica de Pereira.
- 44. Moreno-Jaramillo, Cecilia, and Ana Múnera Brand. 2000. Riesgos y vulnerabilidad: Un enfoque de actuación en lo urbano. Medellín: Universidad Nacional de Colombia, Sede Medellín, Facultad de Arquitectura, Escuela de Hábitat, Centro de Estudios del Hábitat Popular (CEHAP). Available online:
 - https://repositorio.unal.edu.co/handle/unal/70055 (accessed on 14 February 2025).
- 45. Motta, Victor. 2016. The impact of crime on the performance of small and medium-sized enterprises: Evidence from the service and hospitality sectors in Latin America. Tourism

- Economics 23: 993-1010.
- 46. Mugellini, Giulia. 2013. Crime against the private sector in Latin America. Revista Internacional de Estadística y Geografía 4: 18–39. Available online: https://rde.inegi.org.mx/RDE_09/Doctos/RDE_09_Ar t2.pdf (accessed on 20 March 2025).
- 47. Observatorio de Seguridad y Justicia. 2023. Reporte Sobre Incidencia Delictiva Estatal Enero 2023. Consejo Nuevo León para la Planeación Estratégica. Available online: https://conlmx.s3.amazonaws.com/observatory_documents/observatory_document_files/000/000/074/original/REPORTE-A-estatal_%28Ene%29.pdf?1677082694 (accessed on 3 February 2025).
- 48. Ord, J. Keith, and Arthur Getis. 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis 27: 286–306.
- 49. Pabayo, Roman, Erin Grinshteyn, Oliva Avila, Deborah Azrael, and Beth E. Molnar. 2020. Relation between neighborhood socio-economic characteristics and social cohesion, social control, and collective efficacy: Findings from the Boston Neighborhood Study. SSM Population Health 10: 100552.
- 50. Perez-Vincent, Santiago M., David Puebla, Nathalie Alvarado, Luis Fernando Mejía, Ximena Cadena, Sebastián Higuera, and José David Niño. 2024. Los costos del crimen y la violencia: Ampliación y actualización de las estimaciones para América Latina y el Caribe. Washington, DC: Inter-American Development Bank.
- 51. Pérez, Patricia Catalina Medina, Sonia Bass Zavala, and César Mario Fuentes Flores. 2019. La Vulnerabilidad Social En Ciudad Juárez, Chihuahua, México. Herramientas Para El diseño De Una política Social. Revista INVI 34: 197–223. Available online: https://revistainvi.uchile.cl/index.php/INVI/article/vie w/63088 (accessed on 21 March 2025).
- 52. Racic, Ilija, and Sinisa Dostic. 2024. The challenges of defining the term "Intelligence-led Policing Model" in the scientific literature. Journal of Criminology and Criminal Law 62: 53–62.
- 53. Rodríguez, Javier, Carmen Rodríguez, and Eduardo Rosas. 2024. Influence of ICT and Household Assets in the Penetration of Digital Economy in Mexico: An Empirical Analysis. Journal of Telecommunications and the Digital Economy 12: 278–304.
- 54. Sampson, Robert J., Stephen W. Raudenbush, and Felton Earls. 1997. Neighborhoods and violent crime: A multilevel study of collective efficacy. Science 277: 918–24.
- 55. Secretaría de Movilidad y Planeación Urbana. 2022. Términos de referencia para la elaboración del Programa de Ordenación de la Zona Metropolitana de Monterrey 2050. Gobierno de Nuevo León. Available

- online: https://subasta.nl.gob.mx/docs/2_1063.pdf (accessed on 10 February 2025).
- 56. Shaw, Clifford R., and Henry D. McKay. 1942. Juvenile Delinquency and Urban Areas. Chicago: University of Chicago Press.
- 57. Silverman, Bernard. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.
- 58. Stacy, Cristina Plerhoples, Helen Ho, and Rolf Pendall. 2017. Neighborhood-level economic activity and crime. Journal of Urban Affairs 39: 225–40.
- 59. Valderrey, Francisco, Lina Carreño, Simone Lucatello, and Emanuele Giorgi. 2023. Multidisciplinary Evaluation of Vulnerabilities: Communities in Northern Mexico. Sustainability 15: 13077.
- 60. Van Dijk, Jan. 1994. Understanding Crime Rates: On the Interactions between the Rational Choices of Victims and Offenders. The British Journal of Criminology 34: 105–21.
- 61. Vázquez González, Carlos, and Carles Soto Urpina. 2013. El análisis geográfico del delito y los mapas de la delincuencia. Revista de Derecho Penal y Criminología 3: 419–48.
- 62. Vilalta, Carlos, and Gustavo Fondevila. 2021. Testing Routine Activity Theory in Mexico. The British Journal of Criminology 61: 754–72.
- 63. Vilalta, Carlos, and Robert Muggah. 2016. What Explains Criminal Violence in Mexico City? A Test of Two Theories of Crime. Stability: International Journal of Security and Development 5: 1.
- 64. Wang, Zengli, Lin Liu, Hanlin Zhou, and Minxuan Lan. 2019. How Is the Confidentiality of Crime Locations Affected by Parameters in Kernel Density Estimation? ISPRS International Journal of Geo-Information 8: 544.
- 65. Williams, Brett, Ted Brown, and Andrys Onsman. 2010. Exploratory Factor Analysis: A Five-Step Guide for Novices. Australasian Journal of Paramedicine 8: 1–13.