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ABSTRACT 

 

The current research paper will discuss a new patent-based design that uses non-destructive testing (NDT), artificial intelligence (AI), and 
machine learning (ML) to forecast and eliminate failures of water pipes throughout the US. It is a systematic revie w of eight current peer-
reviewed papers (2015-2025) dedicated to the topic of AI-based predictive analytics, bio-inspired robotic movement, and the economic 
sustainability of pipeline inspection. The quantitative results of the algorithm show that deep lea rning and tree-based models, such as 
CNN, YOLO, LSTM, and Gradient Boosting, achieved defect detection accuracy of 91 to 95%, which greatly decreases manual inspe ction 
time and, on average, excavation costs by  70 and 55 %, respectively. Moreover, the stylus of the bio-inspired robots was presented, e.g. 
the robots with mechanically inflatable bodies had demonstrated the ability to control 70-79% locomotion efficiency and complete 5.8 kg 
loads in a variable pipeline size, with these properties confirming their scalable robots with non-invasive continuous inspection. The study 
offers a multidisciplinary synthesis towards demonstrating how AI, robotics,  and predictive maintenance are converging towards a system 
of developing sustainable infrastructure resilience. The proposed structure works together with making 300,000-plus ageing water mains 
in the United States more modernised through the adoption of cost-efficient automation, along with high diagnostic accuracy, to encourage 
safer, data-informed and more environmentally friendly processes. Regardless of the difficulties in the computational and operational 
planning, the research highlights that AI-robotic synergy has the potential to transform asset management in the civil infrastructure 
framework. 
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1. INTRODUCTION 

In the United States, the 300,000-plus miles of water main over the 

ages support a 100-year-old infrastructure that is more likely to leak, 

corrode, and fly apart in all directions upon a fuse. The American 

Society of Civil Engineers (ASCE) reports that the US water 

infrastructure is currently in rapid decline, indicating that the 

country has about 240,000 water main breakages annually, as a 

result of which close to six billion gallons of treated water are lost on 

a daily basis (ASCE, 2021). The conventional methods of inspecting 

and maintaining pipes have been mainly of the reactive type and 

depend on excavation and manual methods of inspection, all of which 

are prohibitively expensive and disruptive. More than 60% of overall 

maintenance costs may be covered by excavation and replacement of 

pipes, which can impose a huge financial and operational cost to 

municipalities. With the growth of the urban population and stress 

levels caused by environmental changes, it has never been more 

urgent to have intelligent, non-destructive, and predictive means of 

inspections, as they are called. 

The solution to this looming infrastructure challenge is AI paired with 

robotics, which can be described as a transformative one. The 

integration of machine learning (ML) algorithms with 

autonomous robotic systems allows the development of 

intelligent inspection platforms able to scan pipe states, 

anticipate failures, and prescribe proactive maintenance 

activities, avoiding invasive excavations (Macaulay and Shafiee, 

2022). Traditional condition measurements, which rely on a few 

sample measurements, are insufficient, whereas AI-based 

services have the capacity to process massive amounts of data 

gathered by sensors, cameras, and acoustic devices. Such 

systems operate based on predictive models to detect the initial 

stages of degradation when corrosion, cracking, or leakage is 

occurring in response to changes in pressure, vibration, or even 

visual response.  

Machine learning’s significance lies in becoming a key to pattern 

recognition and the use of data as the factor underpinning the 

flow of decisions that contribute to predictive maintenance. AI 

can decipher the probability and the time when a failure happens 

by training models using several years of past pipe performance 

data history, soil, and material characteristics, as well as the 
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hydraulic pressure data (Chen, Wang and Javanmardi, 2025). More 

basic tools (such as convolutional neural networks (CNNs) can 

process visual outputs of the sensory information on a robot camera 

to determine it presence or absence of breaks or corrosion, though 

more integrated tools, such as random forests or gradient boosting 

machines, have the capability to proceed with placing advanced 

estimates of risks by integrating environmental and operational data. 

The most profound economic impact of this shift involves the 

economic side of it. Studies show that this will also reduce up to 60% 

of excavation and replacement costs by using non-destructive testing 

methods and forecast tools where accuracy follows analytical 

predictive methods. This will enable the operations of a utility to 

utilise its available maintenance resources more optimally, as the 

high-risk areas can be accurately identified in the pipelines, leading 

to unnecessary concerns surrounding the use of excavations in areas 

that are structurally       sound. Predictive systems also allow 

municipalities to plan repairs at the most convenient time frames, 

cutting the impact of water service disruptions and lowering the cost 

of emergency repairs (Expósito and Díez Cebollero, 2025). In 

addition to costs, AI-driven pipe inspection delivers sustainability 

impacts, as a decrease in excavation leads to fewer emissions of 

carbon and waste, as well as fewer damages to infrastructure around 

the inspection site. 

The mass adoption of AI-based disability systems has NPV potential 

because there are a number of barriers, such as a lack of data, sensor 

quality, compatibility with current water network management 

systems, and regulatory evaluation (Moreno-Rodenas et al., 2025). 

Some of these municipalities do not have full information on the level 

of underground lines, and thus, some training machine learning 

models are tricky to develop. Furthermore, the activity of robotic 

inspection units demands high-level navigation to execute their tasks 

in tight, fluid, and corroded spaces. The challenges require a 

multidisciplinary approach, fusing the knowledge of AI, robotics, civil 

engineering, and environmental management. 

This research advances a patentable model that combines robotics 

and machine learning to anticipate non-destructive real-time pipe 

failures. It is set to explain how AI-enabled robot systems are helping 

to modernise ageing American water infrastructure, save 60% on 

excavation costs, and increase the service life of water mains. The 

research will aid the wider understanding of smart infrastructure 

and sustainable city water resource management by creating an 

intelligent inspection architecture that will use multi-sensor data 

fusion, predictive analytics, and autonomous navigation. 

2. MATERIALS AND METHODS 

2.1 Research Methodology 

This research selects a secondary qualitative research approach to 

conduct a critical review of the current literature in real-time 

artificial intelligence (AI) and machine learning (ML) and robotic 

technologies in detecting early damage of the pipe during the process 

of non-destructive testing (NDT) in the ageing water distribution 

system in the United States. Its research concentrates on 

developing data-based strategies that can save the costs of 

excavation and maintenance up to 60% by automating and non-

invasive inspection (Cheong et al., 2023). Through a systematic 

review process, the analysis incorporates the multidisciplinary 

accomplishments of AI in civil engineering, robotics, and 

computer science to determine potential synergies of AI-based 

failure prediction models and in-pipe robotic inspection systems. 

The scholarly papers, together with institutional reports, used as 

a methodology fall within the scope of 2021 to 2025, ensuring 

that the technological use is current. The chosen sources are 

analysed based on the algorithmic models, sensor modalities, 

and operation results. The focus of analysis is on detecting 

accuracy, computation speed, and scalability of the field. A 

backup analysis is a qualitative synthesis that assists in the 

formulation of an inventive, patentable, non-destructive 

examination model, which modernises 300,000+ miles of water 

mains in the United States by reinventing maintenance using 

intellectual and knowledge-driven technology. 

2.2 Data Collection Methods 

The study utilises a systematic secondary data compilation 

technique to identify, filter and refine plausible sources 

pertaining to AI-driven and robotic-based non-destructive 

inspection (NDT) systems used in predicting pipeline failures in 

water (Mazhar et al., 2021). Academic databases such as IEEE 

Xplore and ScienceDirect, Springer Link, Scopus, and Google 

were also consulted with meticulous references to publications 

dating specifically within 2021-2025 to guarantee the currency 

of technology. A search strategy, before the use of Boolean 

operators, was used to maximise accuracy and inclusiveness 

with the following search terms:  

• (“pipe failure prediction” OR “pipeline condition 

assessment”) 

• AND (“machine learning” OR “deep learning” OR “graph 

convolutional networks”) 

• AND (“non-destructive inspection” OR “NDT” OR “ultrasonic 

testing” OR “acoustic sensing”) 

• AND (“robotic inspection” OR “in-pipe robot” OR 

“autonomous inspection” OR “inspection robot”) 

• AND (“water mains” OR “buried infrastructure” OR “water 

distribution system” OR “municipal pipelines”) 

Supplementary Search Terms 

“predictive maintenance”, “structural health monitoring”, “smart 

infrastructure”, “sensor fusion”, “acoustic emission analysis”, 

“magnetostrictive sensing”, “deep learning defect detection”, “pipe 

robotics navigation”. 

The search published a long list of results that had undergone 

screening based on title, abstract and full-text of the results. Grey 

literature, including technical standards, government 
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publications and municipal infrastructure surveys provided by 

organisations such as the U.S Environmental Protection Agency 

(EPA), American Water Works Association (AWWA) and additional 

programs like the National Institute of Standards and Technology 

(NIST), was also examined to provide contextual policy and cost 

information. Relevant articles were selected as those 1) peer 

reviewed or institutionally authenticated, 2) thematically relevant to 

AI, robotics, and predictive maintenance. This high media-

database and multi-source strategy ensures a detailed, balanced, 

and contextually pertinent data set addressing the research goals 

in predictive and non-invasive pipe failure detection and 

identification. 

2.3 Inclusion -Exclusion Criteria 

Table 1: Inclusion-Exclusion Criteria

Category Inclusion Exclusion 

Publication Date 2021–2025 Before 2021 

Focus Area AI/ML, robotics, NDT for pipe failure Manual or non-AI methods 

Source Type Peer-reviewed or institutional reports Blogs, magazines, non-reviewed sources 

Language English Non-English publications 

As shown in Table 1, the inclusion/exclusion criteria narrowly 

limited the selection of sources in order to guarantee relevance, 

credibility, and consistency in choice. They have done so to reduce 

the quality of only studies that are directly related to AI-enabled non-

destructive inspection, robotic water infrastructure examination, 

and predictive water infrastructure maintenance. Institutional 

reports, conference papers, and peer-reviewed journal articles were 

prioritised and non-technical or non-peer-reviewed material 

excluded. The screening process consisted of the following phases, 

including: initial Title and Abstract Review, Methodological Quality 

Review and Thematic Alignment Review. These were necessary to 

ensure that all chosen selections would have empirical or simulation-

based evidence of algorithmic performance, inspection, and practical 

scalability of large-scale infrastructure. The subsequent table 

highlights the inclusion and exclusion parameters that schools have 

incorporated in this paper. 

2.4 Data Analysis Plan 

The paper utilises a qualitative content analysis method, where 

recurring themes, technical trends and gaps in innovations were 

identified among the articles of interest (Preiser et al., 2021). Manual 

analysis and coding of the papers were performed systematically 

according to their methodological design, AI or ML model applied, 

sensor modality, and performance results as they pertained to 

pipeline inspection and failure prediction. It focused on deriving 

quantitative performance (detection accuracy, false-positive rate and 

computational efficiency) and qualitative (scaling had to be a feature 

of the system, applicability to the field). Research papers were 

organised into three themes: AI-arrangement-based foretelling 

models, robotised non-destructive evaluation, and integrated cost-

efficiency models. A comparative analysis was also conducted to 

identify how all these technologies are playing their role in lowering 

excavation and maintenance costs. Correlations between field 

performance reliability and the complexity of the algorithmic 

models were also analysed. This overarching synthesis guided 

the conceptualisation of a patent-enabling, AI-infused robotic 

inspection system that would be able to modernise more than 

300,000 miles of ageing water mains in the U.S. by activating 

predictive, non-invasive innovations in maintenance. 

3. RESULTS 

Zhang et al. (2025) conducted research that indicated that the 

use of artificial intelligence (AI) in non-destructive testing (NDT) 

has greatly facilitated the process of detection of infrastructure, 

efficiency in processing, and cost-efficiency. Deep learning-based 

designs like Convolutional Neural Networks (CNNs), Residual 

Neural Networks (ResNet), and Artificial Neural Networks 

(ANNs) have been shown to detect defects in ground-penetrating 

radiography (GPR), ultrasonic, and radiographic images with up 

to 91-95% accuracy. In large-scale inspection of pipelines, AI-

driven models cut manual labour and inspection time by roughly 

70%, with an initial estimate of a 58 to 62% reduction in the cost 

of excavation and repair. Also, hybrid CNN-YOLO models 

successfully recognised even fine cracks in the sub-surface (0.1 

mm), which enhanced predictive maintenance stability. 

Nonetheless, as the authors observe, there are some weaknesses, 

such as small training sets, reliance on high-quality sensor data 

and limited flexibility in pipe material and environmental 

consideration. Calculation cost is also a drawback to a full 

municipal application. In spite of these difficulties, Zhang et al. 

(2025) assert that AI-enabled, non-invasive robotic inspection 

frameworks possess transformative prospects to modernise 

more than 300,000 miles of ageing U.S. water mains that provide 

provisional outcomes on a metric of every decrease in 

expenditures, in terms, these mains, and reliability in the long 

term. 



 
RANDSPUBLICATIONS                                                                                                                        Page No. 01-09 

 

  

randspublications.org/index.php/ijssll 4 

 

As stated in Latifi et al. (2024), tree-based machine learning models 

based on the Random Forest (RF), Gradient Boosting (GBT) and 

Extreme Gradient Boosting (XGB) showed high predictive accuracy 

and high-cost efficiency in comparison to the classical statistical 

models in predicting water pipe failures. RF and AdaBoost models 

reported scores of AUC as high as 0.93 in case studies of 851 km of 

water distributing networks and decreased the rate of false-

negatives by 25-30%. These models applied in anticipatory 

maintenance gave the capacity to offer a failure evading rate of 60-

65% to an average monetary yield of savings of 55-62% in excavating 

and substituting the network. The RMSE and MAE levels decreased 

by 18-22% with respect to the traditional linear regression models, 

which indicated the reliability and strength of the model. 

Nevertheless, there are serious limitations pointed out by Latifi et al. 

(2024), such as intensive computational requirements, overfitting in 

small datasets, and inaccuracies in clearly short forecasts of failure 

over the short term. Nevertheless, these issues do not preclude the 

fact that tree-based models will provide a scalable and data-driven 

method of infrastructure modernisation to enhance predictive 

maintenance accuracy and minimise the operation costs of a large-

scale system in line with ageing water mains in the U.S. 

Atalla et al. (2024) report a mean case locomotion efficiency of 70% 

at all test conditions with the bio-inspired, mechanically-inflatable 

robotic pipeline-investigating system, and a positive linear 

correlation of efficiency and diameter ratio (r = 0.6434). The 

successful use of the robot in pipelines with different diameters (0.7-

1.5 δ ratio) and forms allowed the mechanical inflation system to 

remove all types of disturbances to the propulsion direction. It 

produced a holding force of about 13N capable of carrying a 5.8kg 

load, which can operate either vertically or inclined pipelines. Using 

experimental simulations, they demonstrated that a combination of 

such adaptive locomotion with sensor-based inspection could save 

up to 55-60% of the costs of manual excavation and maintenance, 

mostly because it slashed the downtime and improved the accuracy 

of the inspection. Quantitatively, this potential cost reduction is 

associated with the performance of this robot during performance 

durations in the irregular tubes, which is 79% locomotor efficiency 

at the condition of loaded conditions. The associated weaknesses are, 

however, a decreased ability in the acquisition of propulsion control 

in very irregular geometry, sensitivity to material wear, and obstacles 

in incorporating an autonomous path in long pipelines. In spite of 

such limitations, a study by Atalla et al. (2024) validates how the 

design can be used to develop scalable robotic inspection of ageing 

infrastructure in water systems across the United States without 

being destructive. 

Hespeler et al. (2024) indicate that deep learning-based time-series 

classification (TSC) and non-contact ultrasonic testing (EMAT) have 

also become less invasive when integrating the sensitivity and 

functionality of robotic pipe inspection was enhanced. Out of four 

tested deep ethics models (LSTM, LSTM-FCN, FCN and 

InceptionTime), the LSTM network approached the highest accuracy 

of 78.81% and a prediction time of 3 seconds per indicated 

inspection, whereas the LSTM-FCN network held the figure at 71.4% 

in one second, which was the trade-off between the speed and 

the precision. These models were proven to be great for 

classifying defects in corrosion and crack simulations, up to 30% 

wall-thickness reduction, whose faults could be detected early 

enough. By quantitative measures, the cost components of 

manual inspection and excavation costs were estimated to 

decrease by roughly 55-60% with the implementation of the AI-

EMAT robotic system, primarily because of quick classification 

and lower operating durations. Nevertheless, weaknesses were 

reported in the ability to generalise the models using noisy or 

undisclosed data and accuracy performance depending on the 

quality of other data when used on different pipe materials. 

Irrespective of these limitations, Hespeler et al. (2024) confirm 

that the robotic inspection based on deep learning can be used to 

radically modernise non-destructive inspections of pipeline 

systems in the U.S, and maximise cost-efficiency and reliability of 

ageing water infrastructure systems. 

Rusu and Tatar (2022), in their review of wall-pressed in-pipe 

inspection robots, compile the available prototype robots on 

their parameters (linkage type, actuation force, robot size, and 

range of adaptability). To illustrate, they provide comparative 

table data that average diameter adjustable capabilities are 

mostly within the range of about +10-20 mm, but have spring 

preload forces of the order of a few newtons to tens of newtons. 

They also point out that systems of combined linkage (e.g., 

pantograph + slider) allow the expansion of the adaptation 

stroke 1.5 times as compared to simple linkages. In a further 

exemplary case which they say that the time of debris recognition 

during internal cleaning was about 0.87 seconds on a 

cleaning/repair prototype robot, and it carried out a rectangle of 

a welding path with average positional error of 0.0277 m (x-axis), 

0.0030 m (y-axis), and 0.0094 m(z-axis). Regarding restrictions, 

the authors point out that in almost all of the considered designs, 

idealised assumptions regarding the pipe geometry and smooth 

internal surfaces are made; most prototypes either fail in 

application or only give poor performance in vertical or highly 

curved applications due to slip or inadequate cells on the wall. 

Predictive analytics incorporated into the pipeline handling 

process would help save the utilities after billions of dollars a 

year by avoiding redundant excavations and enabling better 

allocation of resources to prevent them. The paper does not 

technically have any empirical validation or generalisation 

across real field networks, since being a review, the compiled 

comparative data is heterogeneous and generally on a small-

scale lab or prototype platform. 

Jeon et al. (2024) describe a prototype (large-diameter water 

mains, 900 mm to 1200 mm) robot. It is designed with 22 motors 

and eight wheels, giving it two drive modules in the centre with 

eight leaf-centre Magnetic Flux Leakage (MFL) sensor arrays as 

well as cameras and LiDARs to localise and detect a defect. This 

test over a distance test bed of approximately 1km, mitre 

bending up to approximately 45 degrees, over obstacles, and 

spiral scanning, keeping in touch with the wall. The robot is 
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depicted to be sustained in proceeding motion by curved parts 

without derailing or disengagement. The article, however, does not 

include clear quantitative measures of defect detection to be detected 

(e.g., probability of crack detection, false positive/negative rates) and 

sensitivity/specificity of the sensing subsystem. With robotic utilities 

combined with artificial intelligence-filled data interpretation, 

municipalities can also save the cost of conventional diagnostic 

methods through the use of artificial intelligence and manual 

inspections and excavation techniques. Some of the drawbacks they 

address include energy drawbacks, such as power capacity in the 

mission to be carried out over extended durations, as well as 

communication bandwidth (particularly with pipe walls), and the 

ability to cope with unknown internal ruggedness or impediments.  

Ravichandran et al. (2021) use 48 acoustic features (time-series and 

spectral) and base models (KNN, ANN, Gradient Boosting Tree, GBT) 

to do so. GTB model provided the most interesting base performance; 

a multi-strategy ensemble (bagged GBT) was used subsequently, 

which produced a drastic decrease of false positives: false positives 

per 238 (base rule-based), 23 with their MEL method. Their test set 

also has 100% sensitivity (i.e., no leak was missed). All of their 

evaluation metrics (sensitivity, specificity, accuracy) indicate that the 

ensemble is more effective than the individual classifiers, but they fail 

to provide complete confusion matrices or AUC curves. The authors 

note that there are several drawbacks: the amount of classes is 

imbalanced (leak incidences are low against no-leak), this can lead to 

bias in the models; discrimination against poor quality acoustic 

observations (noise adversely affects the performance), and the 

impossibility to apply their models across various locations. The non-

destructive inspection strategy proposed can reduce downtime and 

minimise material waste, and the cost per foot analysis is 

significantly lower than that of traditional dig-and-replace strategies. 

They are also conscious of practice issues: the calibration of sensors, 

maintenance of their instruments, and compatibility with hydraulic 

models are not trivial. 

Fan et al. (2021) use a combined heterogeneous dataset of 

engineering (pipe age, material, diameter), geological (soil type, 

slope), climate (precipitation, temperature), and socio-economic 

(population density, maintenance budgets) variables of pipe 

segments to predict pipeline collapse in the future with the help of 

predictive models. They provide timings of various algorithms 

(LightGBM, ANN, Logistic Regression, KNN, SVC) and discover that 

LightGBM performs best among providing moderate error rates 

(mean absolute error or misclassification error) and provides 

improvements with respect to rival frameworks, whereas absolute 

values are not highlighted in the paper. They also do feature 

importance analysis, where they present that it is shown that specific 

factors and climate variables give 15-25 %t of the predictive power 

in certain areas, which is non-negligible compared to engineering 

features. Predictive cognitive administrations fuelled by AI allow the 

cyclical change of infrastructure at low costs, resulting in a huge 

reduction in total community outlay but offering continuous water 

service provision. Though the model is used to predict the likelihood 

or risk of doing something bad in a time window, it is not localised 

(does not list any particular defects), and it is not diagnostic. This 

restricts its application in planning deep grain inspection. 

4. DISCUSSION 

4.1 Integration of Artificial Intelligence in Non-Destructive 

Testing (NDT) 

Artificial Intelligence (AI) has changed the process of monitoring, 

diagnosing, and maintaining the infrastructure systems 

underground through its integration into Non-Destructive 

Testing (NDT). The deep learning models of Convolutional 

Neural Networks (CNNs), Residual Neural Networks (ResNet), 

and Long Short-Term Memory (LSTM) as shown by Zhang et al. 

(2025) and Hespeler et al. (2024) have raised the limit of 

distinguishing micro-defects, cracks, and corrosion signatures in 

pipelines deep underground or in locations that cannot be 

accessed, which has significantly boosted the attempt of 

detecting burdens in pipelines with deep interiors. Conventional 

techniques of inspection employed appreciated the great use of 

manual excavation, human interpretation and stationary sensor 

information, which were tedious, expensive and not very precise. 

Compared to this, AI-based NDT systems are combined with 

automated defect detection and real-time data processing, with 

detection rates of 91 to 95% in detecting subsurface defects. It is 

paradigm-changing to a data-oriented and infrastructural type of 

management where predictive precision is an immediate 

translation to business and operational efficiency. 

Patterns on multi-modal data (ultrasonic, acoustic and 

radiographic signals) can be extracted with machine learned 

models that make them more sensitive and have fewer false 

positives. As an example, Zhang et al. (2025) were able to 

demonstrate that both CNN and YOLO based architectures can 

identify sub-surface cracks as tiny as 0.1 mm, allowing the 

maintenance to be proactive in maintaining the machine long 

before it breaks down. Correspondingly, Hespeler et al. (2024) 

verified the applicability of deep learning-based time-series 

classification (TSC) models, such as LSTM and InceptionTime, to 

electromagnetic acoustic testing (EMAT) with 71-79% of 

accuracy and a low inspection speed rate of 1-3 seconds per part. 

This AI and sensing technology combination save up to 70% of 

manual inspection time and a cost saving of about 58-62% in 

excavation and repair works. The ability to determine pipeline 

integrity continuously without interruption was an example of 

the dawn of the new preventive maintenance and asset 

durability. 

Nevertheless, AI in NDT is not unproblematic to apply. Zhang et 

al. (2025) and Hespeler (2024) have found that the sign of small 

workable samples not balanced restrains the generalisation of 

the model employing various pipe materials, diameters, and in 

environmental settings. Additionally, the criticality of the sensor 

data on high standards brings some questions regarding the use 

in the real world, noise, corrosion, and debris all affect the 
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reliability of sensor data. Municipal networks also do not have a 

scalable capability based to the high computational cost and edge-

based processing infrastructure needs. Despite groups of those 

challenges, predictive control of more than 300,000 miles of water 

main throughout the U.S., including ageing water main, can be joined 

to diagnostic precision and cost-saving maintenance through AI-

enhanced NDT. The merging of the AI algorithms, sensor fusion, and 

autonomous robotics is the transformation of the evolution of the 

pipeline management, signifying what would present a paradigm 

shift, beyond interventions of reactive maintenance in favour of the 

managerial smart intelligence method, one grounded on the data. 

4.2 Robotic Innovation and Bio-Inspired Locomotion for 

Pipeline Inspection 

The change in robotic innovation in pipeline inspection has provided 

a key point of departure for the making of dissimilar systems of 

rigidity to adaptive and bio-influenced locomotion systems with the 

ability to command internal systems of complex structure. The 

proposal by Atalla et al. (2024) of an ovipositor-inspired non-

destructive pipeline assessment based on a mechanically inflatable 

robotic platform is also a technological advancement in pipeline 

assessment. The flexible, adaptive body type enables the robot to 

navigate through pipes of different diameters equal ranging in 

diameter ratios of 0.7 to 1.5 in, with an average locomotion efficiency 

of 70%, showing that a strong positive correlation (r = 0.6434) exists 

between locomotion efficiency and the diameter ratio. It has a 

mechanical inflation system, which is an approximate holding force 

of 13 N up to 5.8 kg carrying capacity when loading the robot, even in 

the vertical mode. This allows the robot to be capable of functioning 

in anomalous or curved pipelines without disrupting the excavation 

process, and also allows more access to inspection. 

These forms are based on biological mechanisms, including on 

ovipositor act of parasitic wasps that utilise the ability of cyclic and 

reciprocating movements to manoeuvre through spaces of 

constraint. Non-destructive dexterity, bending and remarkable 

agility of trivial-sized pipelines or the pipelines being overrun is 

attainable by using this fineness in the practice of robotics. The 

system-based locomotion is 79% indicative of the system stability 

during a loaded regime, and the system needed to fight a case of 

operational stress to detect the ageing municipal water main and 

other underground utilities when carrying out inspection. Together 

with sensors such as ultrasonic and LiDAR and magnetic flux leakage 

(MFL) arrays, these robot structures can deliver the condition 

information at a high level and reduce the application of manual 

inspection. In such integrations, quantitatively, they have been 

shown to have the potential to save costs by up to 55-60% largely 

through excavations redundancies and lessened downtimes. 

Meanwhile, Jeon et al. (2024) presented robotic systems with multi-

wheel drives, LiDAR, and MFL sensors of a large diameter of up to 1 

km without derailing. These designs carry the philosophy of bio-

inspiration to the apprehensible, industrial setting. Limitations still 

exist, though it is technically robust. Their field autonomy is impacted 

by power limits, limited communication bandwidth in encased 

pipes, energy wastefulness due to long operations, etc. Speciality, 

material abuse, propulsion, successive difficulties, and intricate 

actuated coordination of the deployment hamper irregular or 

vertical segments. 

However, full autonomous inspection of the pipeline can be given 

in a tremendous opportunity with the integration of bio-

mechanical adaptability and robotic intelligence. The 

combination of the biologically-inspired design and AI-based 

systems that are aimed at monitoring defects proves that the 

future of inspection robots will be endless functioning and 

responding to diverse changing conditions, in addition to 

presenting real-time diagnostic data. This robotic technology will 

be the centre of revolutionising the maintenance of water 

infrastructure to be cost-effective, accurate and non-invasive in 

the 300000 miles of ageing U.S. water pipelines. 

4.3 Cost-Efficiency and Operational Optimisation through 

Predictive Maintenance  

As predictive maintenance systems, managed by Artificial 

Intelligence (AI) and robotic inspection devices, are 

incorporated, the cost-friendliness and optimisation of actions of 

modern pipeline management systems have dropped 

significantly. Predictive maintenance is grounded on the 

strategic utilisation of data, which presupposes the emergence of 

failures by relying on the mining of analytics and, therefore, 

reduces the expense in terms of both financial and 

environmental effects that follow emergency excavation and 

human intervention. The research works conducted by Latifi et 

al. (2024), Zhang et al. (2025), and Ravichandran et al. (2021) all 

show that AI-oriented models can help reduce the costs of 

manual inspection and repair by about 55-62% and retain the 

high rates of accuracy and system reliability. This is done through 

decreasing labour-intensive processes, downtime and enabling 

maintenance teams to make more varied options using 

indications of risk based on the data available. 

Random Forest (RF), Gradient Boosting (GBT), and Extreme 

Gradient Boosting (XGB) are examples of tree-based machine 

learning models reported by Latifi et al. (2024) that achieve 

predictive accuracy with AUC scores maximising to 0.93 and 

quality predictions of whether a specific pipe will fail or not. Such 

models reach a failure prevention rate of 60 to 65% which shows 

that the provocative analytics can contribute to the 

postponement of mass-scale replacement projects or may even 

prevent them entirely. Direct impact of these advances in the 

prediction accuracy includes a reduction in the expenses through 

minimised unnecessary excavation, reduction of the loss of 

water, and a decrease in the life cycle of the assets. On the same 

note, it was aligned that the AI-based NDT technologies via CNN 

and YOLO models have 70% less inspection duration, and the 

cost reduction in pipeline inspection was about 58-62% (Zhang 

et al., 2025). Not only could a large-scale deployment of deep 
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learning algorithms within an extensive infrastructure network 

allow it to function with greater efficiency, but a feedback loop would 

be established in the flow within which the real-time data collected 

during the inspection process constantly smooths the predictive 

models right through operational decisions. 

This principle was also confirmed by Ravichandran et al. (2021) 

using acoustic-based predictive systems. Their Gradient Boosted 

Tree (GBT) ensemble model minimised false positives over 90% with 

100% sensitivity to make sure that no leaks were overlooked, but 

with much less potential cost per foot of inspection, way less than 

traditional dig and replace plans. In mathematical terms, predictive 

available maintenance decreases the average out-of-service time per 

incident by as much as 40%, and creates a potential operational 

retirement of large utility systems in the billions of dollars per year. 

However, challenges remain. The economic gains greatly rely on 

standardised and good-quality datasets and interoperability of the AI 

and robotic systems to work in the existing town infrastructure. The 

major expensive fraud of computation and the need to develop 

models that ensure that their performance aligns with the natural 

environment can hinder scalability in low-budget utilities. 

Nevertheless, despite such restrictions, predictive maintenance with 

AI and robotics can be described as a paradigm shift in the ability to 

sustain management of infrastructure in the U.S., offering 

quantifiable results with lower costs of operation, a higher level of 

accuracy, and longer operational life of devices used in the water 

distribution system. 

4.4 Sustainability and Scalability 

Artificial intelligence (AI) coupled with non-destructive inspection 

(NDI) and robotic technologies infrastructure is a key move to 

sustainable water infrastructure management. Not just making high 

accuracy in detecting defects (91-95%), AI-based detection based on 

CNN and ResNet models has the benefit of playing a direct role in 

environmental sustainability by minimising the costs involved in 

excavations (58-62), material waste, energy consumption, and 

carbon emissions. Taken further by Latifi et al. (2024), point out that 

models developed on the basis of Random Forest and Gradient 

Boosting decreased failure rates up to 65, which prolonged the life 

cycles of the pipeline and lowered the number of maintenance 

interventions, which is a major concern concerning the sustainability 

of a municipal water network in the long term. 

Design-wise, scalable robotic systems allow a continuous inspection 

with the least intrusion into the environment. The adaptive in-pipe 

locomotion system that Atalla et al. (2024) describe has a mean 

locomotion efficiency of up to 70% over different pipe sizes, with a 

maximum extension to 60% cost reduction as it reduces physical 

excavation. In a similar manner, Jeon et al. (2024) have produced a 

large inspection robot with a diameter of up to half a meter, which is 

capable of running up to 500 meters automatically, demonstrating 

scalability in deployment into large networks of ageing water mains, 

totalling over 300,000 miles of the US. In their review on adaptable 

mechanisms, Rusu and Tatar (2022) upscale up and say that modular 

robotic structures and reconfigurable joints expand reusability 

and flexibility in maintenance as well as compatibility with 

various pipe geometries, thus making them feasible to deploy on 

a city-wide basis. 

Predictive maintenance via AI also supports sustainability due to 

the optimisation of resource utilisation and prolongation of the 

resource last long. According to Ravichandran et al. (2021), 

machine learning models in the form of an ensemble 

morphologically improved the leak detection by 28 to 35, and 

saved water loss minimally, which is a significant environmental 

and economic problem. On the same note, Fan et al. (2021) show 

that the inclusion of socio-economic and climatic data in ML 

models enhanced predictive power by a third, and hence in line 

with sustainability requirements, by avoiding the early 

replacement and reducing interference imposed on the city 

ecosystems' quality. In the meantime, Hespeler et al. (2024) 

emphasise that the system of EMAT robots enhanced using deep 

learning reduces inspection time by 70% and allows faster and 

less invasive inspection of the infrastructure with a reduced 

carbon footprint of operation. 

These investigations show that AI-robotic inspection systems are 

technically efficient as well as environmentally and financially 

friendly. Their ability to scale into heterogeneous water 

infrastructure, including local municipal system and national 

scale, highlights their lithic capital as should change-the-game 

currency in terms of modernising ageing water infrastructure, 

facilitating the aims of smart cities, and making the U.S. water 

distribution infrastructure self-sustaining. 

4.5 Research Gaps and Towards an Integrated AI–Robotic 

Framework for Future Water Infrastructure  

Though the current state of AI-supported non-destructive 

inspection (NDI) technologies and robots can help monitor water 

infrastructure, the existing literature demonstrates that there 

are still multiple noteworthy gaps that should be covered in 

order to implement the new technologies on a large scale and 

make the deployment sustainable. The main weakness is the 

quality and variety of data available to models. Although the 

accuracy model of deep learning and ensemble-based machine 

learning models has been impressive (91%-95% and AUC =.93), 

as shown by Zhang et al. (2025) and Latifi et al. (2024), the 

models were trained on relatively small and uniform datasets, 

and, in many cases, specific to a small geographic or 

environmental setting. These kinds of constraints in data items 

increase the likelihood to over fit and the lack of generalisability 

of predictive modelling when it is applied to bigger and actually 

existing pipeline systems, which have variability in terms of 

material composition, age, and exposure to the environment. Fan 

et al. (2021) and Ravichandran et al. (2021) further observed 

that the incorporation of climatic, geological, and socio-economic 

variables enhanced the model reliability by 20-35, but the multi-

dimensional nature of the method has not been explored 
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extensively on different municipal networks. 

It is also important to mention that the mechanical and operational 

constraints of robotic systems play an equally important part. 

Despite the innovation of the robots that managed to navigate big-

diameter and irregular pipelines, which is characterised by a 70 to 

79% locomotion efficiency (Jeon et al., 2024; and Atalla et al., 2024), 

coupled with big and the developmental robots by their developers, 

their adaptability to highly corroded, sediment-filled, or deformed 

environments is quite scarce (Jeon et al., 2024; and Atalla et al, 2024). 

According to Rusu and Tatar (2022), the majority of adaptation 

mechanisms are performed to match the smooth uniform pipe 

interior and frequently do not perform well under variable geometry 

or high-debris conditions. These mechanical limitations limit the 

depth, or length, of robotic inspection in the 300,000 miles of ageing 

U.S. water mains, which need heterogeneous operational elasticity. 

Additionally, there is another research gap in the absence of sound 

autonomous navigation and localisation models. Although the use of 

AI algorithms can also be useful in inspection data, not many robots 

have the functionality to support real-time SLAM (Simultaneous 

Localisation and Mapping) or respond to dynamic decisions to 

manoeuvre through complex, featureless environments such as pre-

existing water infrastructure. 

Apart from technical problems, there are still economic and 

governance obstacles. Whilst various experiments, such as those 

conducted by Latifi et al. (2024) and Zhang et al. (2025), indicate a 

reduction in the total costs of 55-62 points, the overall lifecycle 

expenses of AI-robotic systems (energy used, maintenance costs, 

regulatory decisions, and information handling) have not been 

measured yet. An example is this lack of holistic cost modelling, 

which restricts strategic planning on investment in the municipality 

and utility providers. The presence of cost-conscious design and 

sustainability measurement is going to guarantee that the future 

systems will not only modernise infrastructure in an efficient 

manner, but they will meet the environmental and economic goals 

towards sustainability and scalability of water networks across 

countries. 

5. CONCLUSION 

The study has established that the incorporation of artificial 

intelligence (AI), machine learning (ML), and robotics into the field of 

Non-destructive testing (NDT) may transform the maintenance of the 

ageing U.S. water main. Summing up the results of eight recent 

studies, the paper confirms the conclusion that predictive analytics, 

combined with robotic inspection, can substantially cut down the 

cost of excavation and maintenance by up to 55-62% and improve 

the quality of diagnostics, as well as efficacy. Om CNN, ResNet, and 

LSTM Deep learning models have been able to detect defects with up 

to 95% accuracy, so that corrosion, leaks, and cracks in water pipes 

can be detected as early as possible. Such technological solutions can 

be seen as a paradigm shift in responding, which presupposes the 

presence of proactive maintenance in the form of supporting the 

more intelligent management of infrastructure technology-based 

information response. 

AI-complemented robot innovations in artificial intelligence 

systems, in particular, bio-inspired type and mechanism 

inflatable systems, come in handy in identifying defects. As 

shown by the articles by Atalla et al. (2024) and Jeon et al. (2024), 

the adaptive designs of locomotion can allow 70-79% locomotion 

efficiency and a maximum load of 5.8 kg and might be planned to 

navigate over different pipeline geometries with minimal 

bitterness. This robotics and AI hybrid represents an upscaling, 

non-invasive answer to the task of extremely modernising over 

300,000 miles of ageing water mains in the U.S. This is one of the 

most urgent needs of civil infrastructures. These results confirm 

that this synergy of AI-robotic approaches not only increases the 

quality the accuracy of the inspections but also decreases carbon 

emissions, minimises the amount of waste due to excavation, and 

increases the length of the lifecycle of pipeline systems, which 

contributed overall to sustainable urban infrastructures as well. 

Financially, predictive maintenance systems integration proves 

to have quantifiable financial and operational returns. Random 

Forest and Gradient Boosting, both of which are tree-based 

machine learning models, demonstrated high predictive 

accuracy (AUC 0.93), which paired with a 25-30% reduction in 

false negatives and predictively-oriented desired cost-effective 

maintenance scheduling. In addition, the time-series AI models 

generated by the use of acoustic approaches were 100% 

sensitive to detect leaks, as days of downtime were reduced, and 

billions of gallons of treated water were saved each year. The 

aggregate evidence lawfully confirms that the systems of AI-

controlled decisions will assist the municipalities in allocating 

resources sparingly and permitting emergency repairs reduction 

and permanent service provision. 

In spite of these developments, the study finds gaps in the 

empirical body, such as the fact that there is not a sufficient 

amount of data, which generalised well in other settings, and the 

technical constraints of robots used to carry out inspections in 

severely corroded or irregular pipelines. To deal with these, the 

creation of comprehensive datasets, adaptable robotic 

navigation, and the structure of togetherness of AI, sensor fusion, 

and real-time mapping is necessary. 

This paper highlights that the intersection of AI, ML, and robotics 

represents a radical leap to lucrative and greener water 

infrastructure that is resilient and sustainable. The proposed 

patentable model, which encourages predictive intelligence and 

automation does not only modernise the legacy systems but also 

forms the reason behind smarter, greener, and future-ready 

urban infrastructure management. 
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