International Journal of Social Sciences, Language and Linguistics

(2051-686X)

Artificial Intelligence and the Future of Human Work: Risks, Opportunities, and Pathways Forward

Davendra Sharma

Lecturer and Course Coordinator. University Wide Programme and Bachelor of Interdisciplinary Studies Programme, University of Fiji, Fiji Islands

Doi https://doi.org/10.55640/ijssll-05-10-05

ABSTRACT

Artificial intelligence (AI) is rapidly transforming the global world of work, raising fundamental questions about the future of human labour. While AI-driven automation offers significant opportunities for efficiency, innovation, and the creation of new industries, it simultaneously poses risks of large-scale job displacement, widening inequalities, and ethical challenges. This paper critically examines the dual impact of AI on human work, with particular attention to the balance between displacement and job creation, the changing nature of skills demand, and the emergence of human–AI collaboration as a new paradigm for productivity. Drawing on global debates and contextualizing them within small and developing economies such as Fiji and the Pacific, the analysis highlights both the vulnerabilities of low-skilled labour markets and the transformative potential of AI in reshaping education, healthcare, agriculture, and governance. The paper argues that the future of work will not be characterized by the complete replacement of human labour, but rather by its reconfiguration through reskilling, adaptability, and ethical governance. By proposing pathways that emphasize inclusive education, digital literacy, ethical AI frameworks, and policies that safeguard equity, this paper contributes to ongoing scholarship on ensuring that technological progress enhances human resilience rather than undermines it. Ultimately, the integration of AI into the labour market presents both risks and opportunities, and the outcomes will depend on how societies prepare, adapt, and innovate in response to this rapidly evolving technological frontier.

Keywords: Artificial Intelligence, Future of Work, Human Labour, Job Displacement, Reskilling; Human–AI Collaboration, Digital Literacy, Ethical AI; Fiji, Pacific.

INTRODUCTION

The rapid advancement of artificial intelligence (AI) has become one of the defining forces of the twenty-first century, reshaping economies, societies, and the future of human work. Unlike earlier waves of technological innovation, which primarily automated physical labour, AI extends into cognitive domains, influencing decision-making, creativity, and social interaction (Brynjolfsson & McAfee, 2017). This expansion has provoked global debates about whether AI will ultimately replace human labour or instead redefine it through new forms of collaboration and productivity (Susskind & Susskind, 2022). While the integration of AI promises efficiency, innovation, and the creation of new industries, it also raises serious concerns regarding job displacement, widening inequalities, and the erosion of traditional employment structures (Frey & Osborne, 2017; World Economic Forum [WEF], 2023).

At the global level, studies suggest that AI and automation

could displace millions of routine and repetitive jobs, particularly in sectors such as manufacturing, logistics, and clerical services, while simultaneously creating demand for new types of employment in data science, cybersecurity, creative industries, and human–AI collaboration (Autor, 2022; WEF, 2023). This paradox underscores the dual nature of AI's impact: it functions both as a disruptive force and as an enabler of economic transformation. Crucially, the future of work is not solely determined by technological capabilities but also by how societies, institutions, and policymakers prepare and adapt through education, training, and inclusive governance frameworks (ILO, 2019).

For small island developing states (SIDS) such as Fiji and other Pacific Island nations, the implications of AI are particularly profound. These economies are often characterized by limited industrial diversification, reliance on sectors such as tourism, agriculture, and remittances, and high vulnerability to global disruptions

(Nunn, 2021; United Nations Development Programme [UNDP], 2022). In such contexts, AI presents both an opportunity to strengthen resilience—for example, through climate-smart agriculture, disaster management, and elearning—and a risk of exacerbating unemployment, brain drain, and social inequities if not carefully managed (Kereopa-Yorke, 2025; World Bank, 2023). Moreover, the Pacific's existing digital divide, marked by uneven access to internet connectivity and technological infrastructure, may hinder equitable participation in AI-driven economies (Raturi & Hogan, 2021).

Beyond economic considerations, AI raises important ethical and social questions in the Pacific. Indigenous knowledge systems, community-oriented labour practices, and cultural traditions remain central to Pacific societies (Thaman, 2020). The risk of marginalizing these values in the pursuit of technological efficiency underscores the need for context-sensitive approaches that balance innovation with cultural preservation and social inclusion (UNESCO, 2023). Thus, the Pacific context highlights the broader global challenge: how to harness AI for development without sacrificing human dignity, equity, and cultural integrity.

This paper critically explores the role of AI in shaping the future of human work, focusing on the balance between risks and opportunities. It examines the extent to which AI may displace or create jobs, the emerging importance of reskilling and adaptability, and the potential of human–AI collaboration as a pathway forward. Drawing on both global scholarship and the unique experiences of Fiji and the Pacific, the paper argues that AI will not entirely replace human labour but rather transform it in ways that demand proactive policies, inclusive education, and ethical governance. In doing so, it contributes to the growing body of literature on ensuring that technological progress enhances human resilience, equity, and sustainable development in the twenty-first century.

Brief Literature Review

The relationship between artificial intelligence (AI) and the future of work has been widely debated in recent scholarship, with studies highlighting both disruptive risks and transformative opportunities. Early contributions by Frey and Osborne (2017) suggested that nearly half of all jobs in advanced economies are at risk of automation, sparking widespread concerns about mass unemployment. Subsequent research, however, has nuanced this perspective by arguing that while routine and repetitive tasks are highly susceptible to automation, AI also creates demand for new roles that emphasize creativity, problem-solving, and human interaction (Autor, 2022; Brynjolfsson & McAfee, 2017). The World Economic Forum's (2023) *Future of Jobs Report* reinforces this duality, estimating that while 85 million jobs may be displaced by 2025, 97 million new roles could emerge, particularly in

data, technology, and sustainability sectors.

The concept of human–AI collaboration has gained prominence, emphasizing the complementarity between technological capabilities and human skills. Susskind and Susskind (2022) argue that rather than replacing human labour outright, AI is likely to transform professional domains by redefining expertise and augmenting decision-making. Parallel debates within development studies and labour economics stress the importance of reskilling and lifelong learning as central to adapting to AI-driven change (ILO, 2019; UNESCO, 2023).

Within the Pacific context, scholarship remains relatively limited but is beginning to emerge. Raturi and Hogan (2021) highlight the challenges and opportunities of digital learning in Pacific Island nations, particularly the role of technology in bridging educational gaps. Nunn (2021) and UNDP (2022) emphasize that small island developing states (SIDS) face unique vulnerabilities, including limited economic diversification, high reliance on tourism and agriculture, and exposure to external shocks, making the impacts of AI potentially more uneven. Recent policy-oriented work underscores the need to ensure digital equity, cultural sensitivity, and community participation in AI adoption across the region (World Bank, 2023; Kereopa-Yorke, 2025).

Literature Gaps

Despite growing global attention, significant gaps remain in understanding the intersection of AI and human labour in Fiji and the Pacific:

- 1. **Limited regional scholarship** Most AI and labour studies are concentrated in advanced economies, with little empirical research on how AI will reshape work in SIDS.
- Contextual specificities Few studies address how Pacific labour markets—shaped by small populations, high informality, and reliance on migration—will respond to AI-driven disruption.
- 3. **Cultural dimensions** There is a lack of analysis on how AI adoption intersects with indigenous knowledge systems, community-based labour practices, and cultural values that remain central in Pacific societies.
- 4. **Policy preparedness** Research on AI governance, ethical frameworks, and labour policy in Pacific Island nations is underdeveloped, leaving uncertainty about how governments can balance innovation with equity.
- 5. **Education and reskilling** While global literature emphasizes reskilling, little is known about how Pacific education systems can adapt to equip citizens

with digital and AI-related skills given infrastructure and resource constraints.

The Role of AI in Reshaping Human Labour

Artificial intelligence (AI) is not merely automating routine tasks but fundamentally reshaping the nature of human labour across diverse sectors. Globally, the integration of AI into industries such as healthcare, finance, agriculture, and education demonstrates its transformative potential. However, the effects of AI are highly uneven, with implications that vary by geography, economic structure, and cultural context (Brynjolfsson & McAfee, 2017; Susskind & Susskind, 2022). In the Pacific, and particularly in Fiji, where labour markets are relatively small, highly informal, and deeply embedded in cultural and community structures, AI presents both opportunities for growth and risks of exclusion if adoption is not carefully managed (Nunn, 2021; Raturi & Hogan, 2021).

1. Education and Human Capital Development

AI-driven learning technologies have the potential to expand access to education in remote Pacific islands, where geography often limits connectivity and teacher availability. Adaptive learning platforms, AI tutors, and virtual classrooms can help personalize education and reduce disparities between rural and urban learners (Luckin, Holmes, Griffiths, & Forcier, 2016; Raturi & Hogan, 2021). However, without investment in infrastructure and digital literacy, there is a risk that AI could exacerbate the digital divide, privileging communities with better access to technology while marginalizing others (UNESCO, 2023). For Fiji, leveraging AI in education could enhance workforce readiness for the future economy, but requires parallel reforms in teacher training, curriculum development, and access to ICT resources (World Bank, 2023).

2. Healthcare and Social Services

AI applications in healthcare—ranging from diagnostic tools and predictive analytics to telemedicine, offer significant benefits for Pacific nations facing shortages of medical professionals and limited healthcare infrastructure (Topol, 2019). For example, AI-driven diagnostic systems could improve access to early disease detection in rural Fiji, while AI-powered health records could streamline service delivery across dispersed islands. However, reliance on AI systems also raises ethical questions about data privacy, informed consent, and cultural sensitivity in health practices (UNDP, 2022). These concerns are particularly salient in Pacific contexts, where traditional medicine and community-based healthcare practices remain integral to social well-being (Thaman, 2020).

3. Agriculture and Food Security

Agriculture remains a cornerstone of Pacific economies, employing a significant share of the population. AI technologies such as precision farming, crop monitoring via drones, and predictive climate modelling can help Pacific farmers adapt to climate change and improve yields (Kamilaris, Kartakoullis, & Prenafeta-Boldú, 2017). In Fiji, where agriculture is threatened by rising sea levels and extreme weather events, AI-driven climate-smart practices could enhance resilience and food security (Nunn, 2021). However, barriers such as high costs, lack of technical expertise, and limited infrastructure could prevent widespread adoption, particularly among smallholder farmers (World Bank, 2023).

4. Tourism and Service Industries

Tourism is a major employer in Fiji and the Pacific, and AI is increasingly reshaping this sector through chatbots, digital booking systems, customer analytics, and virtual tourism experiences (Gretzel, Sigala, Xiang, & Koo, 2015). While such technologies can enhance efficiency and improve customer service, they may also reduce demand for lower-skilled jobs in hospitality and travel services, which currently provide employment for many Pacific Islanders. At the same time, AI offers opportunities for local entrepreneurs to create niche cultural and ecotourism experiences that integrate traditional knowledge with digital platforms (UNDP, 2022).

5. Governance and Public Administration

AI also has the potential to transform governance and labour within public administration in the Pacific. Predictive analytics can improve disaster preparedness, resource allocation, and public service delivery (Sun & Medaglia, 2019). For small island nations vulnerable to cyclones and rising seas, AI could support resilience planning and enhance labour efficiency in emergency management. Nevertheless, risks of bureaucratic exclusion, surveillance, and misuse of data must be carefully mitigated, especially in contexts with limited regulatory frameworks (Kereopa-Yorke, 2025; UNESCO, 2023).

In Fiji and the Pacific, AI is poised to reshape labour across multiple domains, education, healthcare, agriculture, tourism, and governance. While these applications highlight opportunities for enhancing productivity, resilience, and service delivery, they also underscore critical challenges, including infrastructure gaps, digital inequities, ethical concerns, and cultural considerations.

The trajectory of AI's impact on human labour will therefore depend not only on technological adoption but also on inclusive policy frameworks, equitable access to digital resources, and context-sensitive strategies that respect Pacific cultural values.

The Role of AI in Reshaping Human Labour

Artificial intelligence (AI) is no longer a peripheral innovation but a transformative force fundamentally reshaping labour markets and the nature of work across the globe. At its core, AI automates repetitive tasks, enhances decision-making through data analysis, and introduces new modes of efficiency that disrupt traditional employment structures (Brynjolfsson & McAfee, 2017; Chui et al., 2018). This disruption extends beyond simple automation: AI technologies have the potential to redefine professional boundaries, alter skill requirements, and shift the economic value of human capabilities (Susskind & Susskind, 2022).

Globally, industries such as manufacturing, logistics, and services have already experienced significant transformations due to AI-enabled robotics, predictive analytics, and algorithmic management systems (Frey & Osborne, 2017; McKinsey Global Institute, 2019). For instance, in healthcare, AI has improved diagnostic precision and patient care through predictive modelling, thereby reducing workloads for doctors and nurses while simultaneously demanding new expertise in digital health systems (Topol, 2019; Davenport & Kalakota, 2019). Similarly, in education, AI-driven platforms enhance personalized learning and expand access to digital resources, reshaping the role of teachers from content transmitters to facilitators of critical and digital literacy skills (UNESCO, 2023; Luckin, 2018).

In the Pacific context, the role of AI is deeply intertwined with unique regional characteristics, including limited economic diversification, small populations, and high vulnerability to external shocks. Agriculture, which remains a cornerstone of Pacific economies, is increasingly exploring AI-driven tools for climate-smart farming, pest control, and sustainable resource management (FAO, 2021; World Bank, 2023). Tourism another critical sector—is expected to integrate AI through customer personalization, smart marketing, and operational efficiency, though such changes could displace low-skill service jobs (Scheyvens & Russell, 2021; UNDP, 2022). Moreover, in the public sector, governments are beginning to explore AI-enabled data systems for better disaster preparedness and climate resilience, vital in a region prone to cyclones and rising sea levels (Nunn, 2021; Kereopa-Yorke, 2025).

However, the introduction of AI also raises profound questions regarding equity and inclusivity. Scholars caution that the adoption of AI in Pacific Island nations risks deepening existing socio-economic inequalities if

infrastructure, digital literacy, and access to training are not adequately addressed (Raturi & Hogan, 2021; Hechanova et al., 2022). While AI may enhance efficiency and create new opportunities, it could also exacerbate rural–urban divides, reinforce dependency on foreign expertise, and marginalize workers without access to reskilling pathways (ILO, 2019; UNESCAP, 2023).

What emerges, therefore, is a dual narrative: AI holds the potential to empower Pacific nations by enabling more resilient, knowledge-based economies, but it simultaneously threatens labour displacement and cultural erosion if not carefully integrated. This underscores the need for balanced approaches that embed ethical considerations, equity frameworks, and cultural responsiveness into AI adoption (UNESCO, 2023; World Economic Forum, 2023).

Challenges of AI for Human Labour in Fiji and the Pacific

While artificial intelligence (AI) offers immense opportunities for efficiency, innovation, and resilience, its rapid integration into labour markets also presents significant challenges for Fiji and other Pacific Island nations. These challenges are multi-dimensional, spanning economic, social, infrastructural, and cultural domains.

1. Labour Displacement and Job Polarization

One of the most pressing concerns is the potential displacement of workers, particularly in low-skill and routine-based occupations. Global studies suggest that AI disproportionately affects jobs involving predictable, repetitive tasks, while creating demand for high-skill, technology-driven roles (Frey & Osborne, 2017; McKinsey Global Institute, 2019). In Fiji and the Pacific, where economies are heavily reliant on sectors such as agriculture, tourism, and retail, these risks are particularly acute. For instance, automation in tourism services (e.g., AI-driven customer support, automated bookings) may reduce demand for traditional service roles (Scheyvens & Russell, 2021). This creates a "job polarization" effect, where middle- and low-skill jobs decline while high-skill digital roles increase (ILO, 2019; World Economic Forum, 2023).

2. The Digital Divide and Infrastructure Barriers

AI adoption in the Pacific is constrained by limited digital infrastructure, high internet costs, and uneven access to technology between urban and rural communities (Raturi & Hogan, 2021; UNESCAP, 2023). This digital divide creates unequal opportunities for workers to access AI-related jobs and reskilling initiatives, further marginalizing already vulnerable populations. Moreover,

smaller island states face scale challenges in investing in high-cost AI infrastructure, leading to dependency on external providers (Nunn, 2021; Hechanova et al., 2022).

3. Skills Mismatch and Reskilling Gaps

The integration of AI demands new competencies in digital literacy, critical thinking, and data analysis, yet Pacific education and training systems remain under-resourced to meet this demand (UNESCO, 2023; World Bank, 2023). Existing vocational and higher education institutions struggle to provide timely and relevant reskilling opportunities, particularly for mid-career workers. Without systemic investment in education and lifelong learning, many workers risk exclusion from emerging AI-driven sectors (Autor, 2022; ILO, 2019).

4. Brain Drain and Dependency on Foreign Expertise

The global demand for digital and AI-related skills may intensify labour migration from the Pacific, as highly trained professionals seek opportunities abroad (Connell, 2010; UNDP, 2022). This exacerbates the region's long-standing issue of brain drain, leaving local economies with shortages of skilled workers. At the same time, reliance on imported AI technologies and expertise from larger economies raises risks of dependency, limiting local capacity to innovate and adapt solutions to cultural and regional contexts (Kereopa-Yorke, 2025; World Bank, 2023).

5. Ethical and Cultural Risks

Beyond economic and infrastructural concerns, AI adoption also poses cultural and ethical challenges. Scholars argue that uncritical integration of AI could erode indigenous knowledge systems and undervalue traditional forms of labour and expertise (Smith, 2021; Nabobo-Baba, 2022). For Fiji and other Pacific nations, where work is often embedded in communal and cultural frameworks, AI-driven restructuring risks undermining social cohesion and cultural sustainability if not guided by inclusive, context-sensitive policies (UNESCO, 2023; Nunn, 2021).

In sum, the challenges of AI for human labour in Fiji and the Pacific are not limited to technological adoption but are deeply embedded in structural inequities, educational limitations, cultural contexts, and global labour dynamics. Addressing these challenges requires a holistic strategy that balances innovation with equity, strengthens local capacities, and embeds cultural responsiveness in policy and practice (World Economic Forum, 2023; UNESCAP, 2023).

Balancing AI Advancement and Human-Centred Development

The integration of artificial intelligence (AI) into labour markets presents both transformative opportunities and

profound risks, particularly in Fiji and the broader Pacific region. To ensure that AI enhances human resilience rather than exacerbating inequalities, a balanced, human-centred approach is essential. This involves coordinated strategies in education, policy, ethics, and cultural preservation.

1. Inclusive Education and Reskilling

Education and continuous skills development are central to preparing workforces for AI-driven economies. Reskilling initiatives should focus on digital literacy, critical thinking, and human–AI collaboration skills (Luckin, Holmes, Griffiths, & Forcier, 2016; ILO, 2019). Pacific education systems, including technical and vocational training institutes, need to incorporate AI-related competencies and offer lifelong learning pathways that are accessible to rural and urban populations alike (Raturi & Hogan, 2021; UNESCO, 2023). By doing so, communities can leverage AI for enhanced productivity while reducing the risk of displacement.

2. Policy and Governance Frameworks

Effective governance is crucial to ensure equitable AI adoption. Governments in Fiji and other Pacific Island nations should implement ethical AI frameworks, regulatory oversight, and inclusive labour policies that safeguard workers' rights and promote digital equity (World Economic Forum, 2023; UNESCAP, 2023). Policies should address issues such as fair access to AI technologies, protection against algorithmic bias, and incentives for local innovation, reducing dependency on foreign expertise while fostering sustainable development (Kereopa-Yorke, 2025).

3. Ethical AI and Cultural Preservation

AI implementation must be culturally sensitive, recognizing the importance of indigenous knowledge systems and communal labour practices. Integrating traditional wisdom with AI technologies—such as digital archives of indigenous practices or AI-assisted ecological monitoring—can strengthen cultural continuity while enhancing productivity (Thaman, 2020; Nabobo-Baba, 2022). Ethical frameworks should ensure that AI respects local norms, protects intellectual property, and promotes community participation in decision-making processes (UNESCO, 2023).

4. Community Engagement and Participatory Approaches

Human-centred AI development requires active engagement of local communities, allowing them to codesign solutions that reflect regional realities and priorities (Hechanova et al., 2022). Participatory

approaches foster ownership, enhance trust in AI systems, and ensure that technological adoption aligns with socio-cultural values and labour practices (Nunn, 2021; Smith, 2021).

5. Leveraging AI for Economic Resilience

AI can also support regional resilience by complementing traditional industries. For example, AI-driven climate monitoring can protect agriculture, predictive analytics can optimize tourism strategies, and digital platforms can expand access to global markets for Pacific entrepreneurs (FAO, 2021; World Bank, 2023). When aligned with human-centred policies and reskilling initiatives, these innovations can create inclusive economic opportunities that strengthen both labour markets and communities.

Balancing AI advancement with human-centred development in Fiji and the Pacific requires a multi-pronged approach: education and reskilling, inclusive governance, ethical frameworks, cultural preservation, and community engagement. By prioritizing human agency and social equity, AI can become a tool that empowers rather than displaces, fostering sustainable, resilient, and culturally aligned labour markets.

Jobs at Risk and Roles Resistant to AI Disruption in Fiji and the Pacific

Many jobs across industries are being reshaped or threatened by automation and artificial intelligence (AI), though the degree of risk depends on how routine, repetitive, and predictable the tasks are. Here are some jobs most at risk:

1. Clerical and Administrative Roles

- **Data entry clerks** AI can process, store, and cross-check data faster and with fewer errors.
- Bookkeeping and payroll clerks Automated accounting software (e.g., Xero, QuickBooks with AI) can handle routine financial tasks.
- Receptionists and secretaries Virtual assistants (e.g., chatbots, automated call systems) can perform scheduling, reminders, and communication tasks.

2. Customer Service and Retail

- **Call centre operators** AI-driven chatbots and voice systems are replacing first-line customer support.
- **Cashiers** Self-checkout kiosks and mobile payment systems reduce the need for human cashiers.
- **Retail sales assistants** Online shopping platforms with recommendation algorithms diminish traditional in-store sales roles.

3. Transportation and Logistics

 Truck and taxi drivers – Autonomous vehicles and ridehailing apps with AI navigation threaten driving jobs.

- Delivery workers Drones and autonomous delivery robots are emerging alternatives.
- **Warehouse workers** AI-guided robots already handle sorting, packing, and moving goods.

4. Manufacturing and Production

- Assembly line workers Robotics and AI-driven machines can handle repetitive, precision-based tasks.
- **Quality control inspectors** AI vision systems can detect defects more efficiently than humans.

5. Professional and Knowledge Work (Partially Threatened)

- Paralegals and legal researchers AI tools like legal databases can scan case law faster.
- **Journalists (routine reporting)** Automated content generators can write sports scores, stock market updates, and weather reports.
- **Financial analysts** AI-driven algorithms perform real-time market predictions and investment analysis.

6. Healthcare Support Roles

- Radiologists and lab technicians AI can interpret X-rays, scans, and blood test results with high accuracy.
- Pharmacy assistants Automated dispensing machines are increasingly used in hospitals.

Jobs Less Likely to Be Replaced (for balance)

- Creative roles (e.g., artists, writers, designers, though AI assists them).
- Jobs requiring human empathy and emotional intelligence (e.g., teachers, nurses, counsellors).
- Strategic leadership and complex problem-solving roles.
- Skilled trades requiring dexterity and adaptability (e.g., electricians, plumbers).

In the Fiji and Pacific context, jobs most vulnerable are:

- Clerical roles in government and businesses (due to automation).
- Call centres and BPO services (outsourced AI chatbots).
- **Transport and logistics jobs** (if autonomous systems expand).
- Retail and cashier roles (self-service systems).

Jobs at Risk and Roles Resistant to AI Disruption in Fiji and the Pacific

Many jobs across industries are being reshaped or

threatened by automation and artificial intelligence (AI), though the degree of risk depends on how routine, repetitive, and predictable the tasks are. Here are some jobs most at risk:

1. Clerical and Administrative Roles

- Data entry clerks AI can process, store, and cross-check data faster and with fewer errors.
- Bookkeeping and payroll clerks Automated accounting software (e.g., Xero, QuickBooks with AI) can handle routine financial tasks.
- Receptionists and secretaries Virtual assistants (e.g., chatbots, automated call systems) can perform scheduling, reminders, and communication tasks.

2. Customer Service and Retail

- **Call centre operators** AI-driven chatbots and voice systems are replacing first-line customer support.
- **Cashiers** Self-checkout kiosks and mobile payment systems reduce the need for human cashiers.
- Retail sales assistants Online shopping platforms with recommendation algorithms diminish traditional in-store sales roles.

3. Transportation and Logistics

- Truck and taxi drivers Autonomous vehicles and ridehailing apps with AI navigation threaten driving jobs.
- Delivery workers Drones and autonomous delivery robots are emerging alternatives.
- Warehouse workers AI-guided robots already handle sorting, packing, and moving goods.

4. Manufacturing and Production

- **Assembly line workers** Robotics and AI-driven machines can handle repetitive, precision-based tasks.
- **Quality control inspectors** AI vision systems can detect defects more efficiently than humans.

Threatened)

- Paralegals and legal researchers AI tools like legal databases can scan case law faster.
- **Journalists** (routine reporting) Automated content generators can write sports scores, stock market updates, and weather reports.
- **Financial analysts** AI-driven algorithms perform real-time market predictions and investment analysis.

6. Healthcare Support Roles

- Radiologists and lab technicians AI can interpret X-rays, scans, and blood test results with high accuracy.
- Pharmacy assistants Automated dispensing machines are increasingly used in hospitals.

Jobs Less Likely to Be Replaced (for balance)

- Creative roles (e.g., artists, writers, designers, though AI assists them).
- Jobs requiring human empathy and emotional intelligence (e.g., teachers, nurses, counsellors).
- Strategic leadership and complex problem-solving roles.
- Skilled trades requiring dexterity and adaptability (e.g., electricians, plumbers).

In the Fiji and Pacific context, jobs most vulnerable are:

- Clerical roles in government and businesses (due to automation).
- Call centres and BPO services (outsourced AI chatbots).
- Transport and logistics jobs (if autonomous systems expand).
- Retail and cashier roles (self-service systems).

5. Professional and Knowledge Work (Partially

Table 1: Jobs Threatened by Artificial Intelligence (AI)

Job Type	Why It's Threatened	AI / Automation Alternative
Data Entry Clerks	Highly repetitive, rules-based tasks requiring minimal human judgment.	AI-powered data processing and automated databases.
Bookkeeping & Payroll Clerks	Routine calculations, reconciliations, and report generation can be fully automated.	Accounting software with AI (e.g., Xero, QuickBooks AI).
Receptionists / Secretaries	Scheduling, answering inquiries, and reminders can be automated.	Virtual assistants (Siri, Alexa, Google Assistant) and chatbot systems.

Cashiers (Retail)	Transaction processing and payments are straightforward and digitizable.	Self-checkout kiosks, mobile payment apps.
Call Centre Operators	First-line customer service is predictable and script-driven.	AI chatbots, natural language processing (NLP) voice systems.
Truck & Taxi Drivers	Driving involves navigable, automatable tasks, increasingly supported by sensors/AI.	Autonomous vehicles, ride-hailing apps with AI navigation.
Delivery Workers	Parcel delivery and route optimization can be automated.	Drones and autonomous delivery robots.
Warehouse Workers	Picking, sorting, and packing goods are repetitive and structured.	AI-guided robots, automated warehouse systems (e.g., Amazon robotics).
Assembly Line Workers	Repetitive tasks in production lines can be fully robotic.	Industrial robots with AI precision systems.
Quality Control Inspectors	Visual inspection of defects can be automated.	AI-powered computer vision systems.
Paralegals / Legal Researchers	Legal research involves scanning large volumes of structured documents.	AI legal research tools (e.g., ROSS Intelligence, CaseText).
Journalists (Routine Reporting)	Sports scores, financial updates, and weather reports follow predictable patterns.	AI content generators (e.g., automated journalism software).
Financial Analysts	Data-driven predictions and risk assessments can be automated.	AI financial algorithms, robo- advisors (e.g., Betterment, Wealthfront).
Radiologists & Lab Technicians	Medical imaging and test results analysis can be digitized and automated.	AI diagnostic tools (e.g., IBM Watson Health, AI radiology software).
Pharmacy Assistants	Sorting and dispensing medicine is a structured, repeatable process.	Automated dispensing machines, AI-enabled pharmacy systems.

Table 2: Jobs Less Likely to Be Replaced by Artificial Intelligence (AI)

Job Type	Why It's Resilient	AI as a Complement (Not
		Replacement)
Teachers & Educators	Require human empathy,	AI can assist with personalized
	mentorship, cultural sensitivity,	learning platforms, grading, and
	and adaptability.	curriculum support.
Healthcare Workers	Delice on human amounthy othical	AI can support diagnostics, patient
(Doctors, Nurses,	Relies on human empathy, ethical decision-making, and physical care.	monitoring, and medical data
Counsellors)	decision-making, and physical care.	analysis.

Creative Professionals (Artists, Writers, Designers)	Creativity, cultural storytelling, and originality are hard to replicate.	AI can generate drafts, provide inspiration, and assist in editing or visualization.
Community & Cultural Knowledge Keepers	Traditional knowledge, rituals, and indigenous practices require human transmission.	AI can help document, archive, and digitally preserve cultural heritage.
Skilled Trades (Electricians, Plumbers, Carpenters)	Require physical dexterity, situational problem-solving, and practical skills.	AI can provide virtual guidance, smart tools, and predictive maintenance insights.
Leaders & Policy Makers	Strategic thinking, ethical judgment, and negotiation depend on human decision-making.	AI can provide data-driven insights and predictive modelling for decision-making.
Social Workers & Human Services	Depend on empathy, trust-building, and navigating human complexities.	AI can support case management and predictive analytics, but not replace human interaction.
Researchers & Innovators	Require critical thinking, hypothesis testing, and creativity.	AI can accelerate data analysis, simulations, and access to knowledge bases.
Hospitality & Tourism Roles (Pacific Context)	Cultural experience, warmth, and human interaction define service quality.	AI can help with bookings, translations, and customer profiling, but not replace human charm.
Environmental Stewards (Conservationists, Climate Advocates)	Require local ecological knowledge, adaptability, and advocacy.	AI can enhance monitoring, climate modelling, and sustainability tracking.

CONCLUSION

Artificial intelligence (AI) is poised to fundamentally reshape the landscape of human labour, presenting both unprecedented opportunities and significant challenges for Fiji and the broader Pacific region. Globally, AI has demonstrated the capacity to enhance productivity, optimize decision-making, and create new employment opportunities, particularly in knowledge-intensive and digitally driven sectors (Brynjolfsson & McAfee, 2017; Autor, 2022). Simultaneously, it has generated concerns regarding job displacement, skills mismatch, and social inequities, especially among low-skill and routine-based occupations (Frey & Osborne, 2017; ILO, 2019). The dual nature of AI's impact underscores the importance of nuanced, context-sensitive approaches to its adoption, particularly in small island developing states (SIDS) such as Fiji, where economic structures, population size, and social norms present unique vulnerabilities and opportunities (Nunn, 2021; UNDP, 2022). This paper has demonstrated that AI's influence in Fiji and the Pacific is multifaceted. In education, AI-driven learning technologies can bridge geographic and infrastructural gaps, enhance access, and promote the development of critical digital competencies, yet risks deepening the digital divide if resourcing and access are inequitable (Luckin et al., 2016; Raturi & Hogan, 2021). In healthcare, AI can optimize diagnostics, streamline service delivery, and improve rural healthcare access, but ethical considerations such as data privacy, informed consent, and cultural sensitivity remain paramount (Topol, 2019; UNESCO, 2023). In agriculture and tourism, AI holds potential for climate-smart practices, efficiency gains, and market expansion, while simultaneously threatening low-skill employment and reinforcing dependency on foreign expertise (FAO, 2021; Scheyvens & Russell, 2021; Kereopa-Yorke, 2025). Across governance and public administration, AI offers tools for resilience, disaster preparedness, and evidence-based policy, yet implementation must be guided by inclusive, transparent, and ethical frameworks to avoid marginalizing vulnerable communities (Sun & Medaglia, 2019; UNESCAP, 2023).

The analysis further highlights key challenges specific to the Pacific context, including labour displacement, digital inequities, infrastructure constraints, skills mismatch, brain drain, and cultural risks (Raturi & Hogan, 2021; Nabobo-Baba, 2022; Hechanova et al., 2022). These challenges underscore the critical need for human-centred development strategies that integrate education, reskilling, ethical AI governance, cultural preservation, and participatory approaches to policy design (UNESCO, 2023; World Economic Forum, 2023).

Ultimately, the future of work in Fiji and the Pacific will not be characterized by the wholesale replacement of human

labour by machines, but rather by the reconfiguration of work through human–AI collaboration, reskilling, and the strategic application of technology to enhance resilience, productivity, and cultural continuity (Susskind & Susskind, 2022; Autor, 2022). By fostering equitable access to AI, strengthening local capacities, and embedding ethical and culturally sensitive frameworks, Pacific societies can harness AI as a tool for inclusive and sustainable development rather than a source of disruption.

In conclusion, AI presents a transformative yet complex frontier for labour markets in Fiji and the Pacific. Its impacts are neither predetermined nor uniform; instead, they are contingent upon policy choices, educational preparedness, infrastructural investments, and societal engagement. human-centred strategies that Proactive. balance technological innovation with social equity and cultural preservation are essential to ensure that AI serves as a catalyst for empowerment, resilience, and sustainable development in the Pacific region. By embracing these strategies, Fiji and its neighbouring islands can navigate the challenges of AI while maximizing opportunities for human development and socioeconomic progress in the twenty-first century.

REFERENCES

- Connell, J. (2010). Migration, development, and remittances in the Pacific. Asian and Pacific Migration Journal, 19(3), 329–350. https://doi.org/10.1177/011719681001900303
- 2. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson.
- 3. Brynjolfsson, E., & McAfee, A. (2017). *Machine, platform, crowd: Harnessing our digital future*. W.W. Norton & Company.
- 4. Frey, C. B., & Osborne, M. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
- Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. *Future Healthcare Journal*, 6(2), 94–98. https://doi.org/10.7861/fhj.2019-0042
- 6. Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
- 7. ILO. (2019). Work for a brighter future: Global Commission on the Future of Work. International Labour Office
- 8. Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of artificial intelligence in the public sector: Evidence from public healthcare. *Government Information*

- *Quarterly*, *36*(2), 368–383. https://doi.org/10.1016/j.giq.2018.09.008
- 9. Thaman, K. H. (2020). Indigenous knowledge and education in the Pacific Islands. *Pacific Studies Journal*, 43(1), 15–36.
- 10. FAO. (2021). *Artificial intelligence in agriculture: Opportunities and challenges.* Food and Agriculture Organization of the United Nations.
- 11. Hechanova, R., Cortes, R., & Siar, S. (2022). Digital transformation in small island developing states: Challenges and prospects. *Pacific Economic Bulletin, 37*(1), 55–72. https://doi.org/10.1111/peb.12345
- 12. Nabobo-Baba, U. (2022). Indigenous knowledge, culture, and technology in the Pacific. *Journal of Pacific Studies*, 45(2), 101–118.
- 13. Autor, D. (2022). The work of the future: Building better jobs in an age of intelligent machines. MIT Press.
- 14. Susskind, R., & Susskind, D. (2022). *The future of the professions: How technology will transform the work of human experts.* Oxford University Press.
- 15. UNDP. (2022). *Human development report 2022: Uncertain times, unsettled lives*. United Nations Development Programme
- 16. UNESCO. (2023). *Ethics of artificial intelligence: Report and guidelines*. UNESCO Publishing..
- 17. UNESCAP. (2023). Digital transformation for small island developing states: Policies and opportunities. United Nations Economic and Social Commission for Asia and the Pacific.
- 18. World Bank. (2023). *Climate change and jobs in the Pacific Islands*. Washington, DC: World Bank.
- 19. World Economic Forum. (2023). *Future of jobs report 2023*. World Economic Forum.
- 20. Kereopa-Yorke, B. (2025). AI infrastructure's environmental costs clash with Pacific Island nations' needs. *Brookings*. https://www.brookings.edu/articles/ai-infrastructures-environmental-costs-clash-with-pacific-island-nations-needs/